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In this paper is considered a problem of the semi-infinite crack at the 
interface between the two elastic isotropic layers in conditions of the 
environmental temperature change. The energy release rate needed for the 
crack growth along the interface was determined, for the case when the two-
layered sample is cooled from the temperature of the layers joining down to 
the room temperature. It was noticed that the energy release rate increases 
with the temperature difference increase. In the paper is also presented the 
distribution of stresses in layers as a function of the temperature and the 
layers’ thickness variations. Analysis is limited to the case when the 
bimaterial sample is exposed to uniform temperature.  
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1. Introduction 

Thin films, coatings or multi-layer samples, made of different materials, are used for various 
purposes. The most common examples of application are the ceramic coatings on the metal substrate, 
metal layers on the polymer substrate, where the temperature at which these layers are applied is 
significantly higher than the working temperature; the thermo-insulating coatings like Al2O3 on Ni-Cr-
Al and Fe-Cr-Al alloys, hard transparent coatings on optic polymers, metal fibers on the polymer 
substrate in electronic modules or the photo-electric actuators. 

When brittle coatings function in the presence of thermal gradients and high heat flux, they are 
susceptible to delamination and spalling. The most widely investigated examples are thermal barrier 
coatings used in turbines for power generation. Articles that analyze the mechanisms capable of 
providing sufficient energy release rate to drive delamination have been presented in [1, 2]. Thermal 
barrier coating systems are susceptible to delamination failures in the presence of a large thermal 
gradient. Three possible causes of internal delamination are analyzed in [3]. Delamination of coatings 
initiated by small cracks paralleling the free surface is investigated in [4] under conditions of high 
thermal flux associated with a through-thickness temperature gradient. Certain aspects of residual life 
estimates of the high pressure turbine housing case, which is a thermal power plant component was 
considered in [5]. The damages there appear in form of a dominant crack on the housing surface. 

In the layers made of different materials, during the environmental temperature change, as a 
result of the difference in the thermal expansion coefficients, appear thermal stresses. Those stresses 
are causing the appearance of an interfacial crack. When such a crack is formed, the energy release 
rate needed for the crack propagation depends on stresses’ intensities in both layers. If one assumes 
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that the layers are made of the elastic isotropic materials, the stresses will depend upon the elastic and 
thermal characteristics of the layers’ materials, as well as on the temperature variations. The driving 
force of the interfacial fracture in this case is the energy release rate G. 

2. Problem formulation 

In order to solve the problem, the semi-infinite crack, at the interface between the two layers, under 
general loading conditions is considered. Each of the layers is homogeneous, isotropic and linearly 
elastic. The crack lies along the negative portion of the x-axis. Thicknesses of layers 1 and 2 are h1 and 
h2, respectively. The two-layered sample is homogeneously loaded along three edges by forces and 
moments per unit length, as shown in Figure 1. This case of the loaded sample was first analyzed by 
Suo and Hutchinson, [6] . Their solution can be used for interpreting behavior of the interfacial crack 
between the two layers in conditions of the variable environmental temperature. 

 

 

 

Figure 1. Two-layer sample with an interfacial crack along the negative direction of the x-axis in 
general loading conditions 

 

Based on analysis by Suo and Hutchinson, [6], far away from the crack tip, the two-layered sample 
can be considered as the composite beam. The neutral axis lies at a distance δ from the bottom of layer 
2, where 
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where 1 2/h hη =  - is the relative layer thickness and 1 / 2E EΣ = - is the ratio of the reduced elasticity 
moduli, with 2

1 1 1/ (1 )E E ν= −  and 2
2 2 2/ (1 )E E ν= − for the plain strain conditions. Variables E1 and 

E2 represent the Young moduli of layers 1 and 2, while ν1 and ν2 are their Poisson’s ratios, 
respectively.  

The two-layered sample is in the pure tension conditions, combined with the pure bending. The only 
stress component which is non zero is the normal stress σxx. The corresponding strain component is the 
linear function of a distance from the neutral axis, i.e.: 
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where the nondimensional variables of the cross section and the second area moment are defined as: 
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By application of the superposition principle, the problem shown in Figure 1 is reduced to the problem 
presented in Figure 2, where the number of loading parameters, which control the crack behavior, is 
reduced to two, which represent the linear combination of the edge loads: 
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are the geometric factors. 

 

 

 

Figure 2. Reduced problem of the two-layered sample with the crack along the negative 
direction of the x-axis in general loading conditions and with 1 2* ( )M M P h h / 2= + + . 

 

The energy release rate can be computed, within the plain strain conditions concept, as a difference 
between energies within the bulk far ahead and behind the crack tip. The result is the positive square 
form of P and M, which can be written as: 
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The energy release rate determines intensity of a singularity in the crack tip vicinity, but it does not 
determine the mixed mode. This can be determined based on the complex stress intensity factor K, 
which in accordance with linearity and dimensional analysis can be written as 
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where parameters α and β represent the Dundurs’ parameters, which are defined as, [7]: 
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While the parameter ε is called the bielastic constant or the oscillatory index and it is a characteristic 
of the interfacial crack. It is determined as, [8]: 
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Angle ( , , )ω ω α β η≡  is a function of Dundurs parameters α and β and relative layer thickness η. This 
function is defined in [9] based on solving the elastic problem and processing the tabular results of 
Suo and Hutchinson, [6]. 

If h is the referent length for the real and imaginary part of K, based on equation (7) one can write: 
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The phase load angle, as the measure of relative value of Mode 2 with respect to Mode 1, in 
accordance with [10], for the referent length h ahead of the crack tip, will be: 

2

1

sin cos( )
cos sin( )

Karctg arctg
K

ξ ω ω γψ
ω ω γ

⎡ ⎤− +
= = ⎢ ⎥+ +⎣ ⎦

,                                         (11) 

where: Ph U
M V

ξ = . 

When the environmental temperature changes from the initial value T0 to T, the thermal stress will 
appear in layer 1, defined by the following expression, [1]: 
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where α1 and α2 are the thermal expansion coefficients of layers 1 and 2, respectively. 

The normal stress distribution in the x-axis direction in both layers for problem shown in Figure 2, far 
ahead of the crack tip is: 
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where the second area moments (moments of inertia) of layers 1 and 2 are: and , 
respectively. 

3
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The strain distribution in layers, as a function of stress and temperature is: 
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The unknown values of equivalent loads P and M, in equation (13) are being determined from the 
boundary conditions for the problem shown in Figure 2, which are: equality of layers 1 and 2 curva-
tures, i.e., and equality of the strain component εxx on the crack surfaces, i.e., 1κ κ= 1 2( ) ( )xx xxε ε= . 
By applying these two conditions, one obtains from equation (13): 
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By substituting equations (15) in the first of equations (13), after some algebraic rearrangements, the 
stress distribution in layer 1 is obtained as: 
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While the stress distribution at the surface of layer 1 is: 
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3. Results and discussion 

In Figure 3 is presented the variation of the energy release in terms of the environmental temperature 
changes, for an arbitrary value of the relative layer thickness, (h1/h2). The diagram is obtained based 
on equations (6) and (15), by application of the programming package Mathematica®.  
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Figure 3. Variation of the energy release rate with increase of the environmental temperature 
change for a single value of the layer’s relative thickness. 

From Figure 3 one can notice, for the interfacial crack between the two layers, a tendency of the 
energy release rate increase with increase of the environmental temperature change. The interface 
destruction will occur when the energy release rate exceeds the value of the interface fracture 
toughness. 

In Figure 4 is depicted the variation of the normalized stress inside layer 1 as a function of the relative 
layer thickness (h1/h2), for three different bimaterial combinations, i.e., three different values of 
parameter Σ, which represents ratio of the reduced elasticity moduli of layers 1 and 2.  Diagrams are 
obtained based on equation (16), by application of Mathematica ®. 

 

Figure 4. Normalized stress inside layer 1 as a function of the relative layer thickness (h1/h2) 

In Figure 5 is shown the variation of the normalized stress at the surface of layer 1 as a function of the 
relative layer thickness (h1/h2), for three different bimaterial combinations. Diagrams are obtained 
based on equation (17). 
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Figure 5. Normalized stress at the surface of layer 1 as a function of the relative layer thickness 
(h1/h2) 

Thermal stress, σT that is defined by equation (12) is a stress in layer 1, which will exist if layer 2 has 
the infinite thickness, i.e., 1 2/h h 0η = →

1
. This means that the stress in layer 1 is basically thermal 

stress σT when the layer is thin (η << ), but it is reduced only to a portion of σT when layers have 
approximately same thicknesses, as can be seen from Figure 4. 

From Figure 5 can be seen that the normalized stress on the surface of layer 1 has the negative value 
and that its values are higher than those of the stress in the layer. 

From Figures 4 and 5 can be concluded that, when layer 1 is significantly thinner than layer 2, 
( 1η << ), the normalized stresses at the surface and in the layer are equal to thermal stress σT. On the 
contrary, when the layer 1 is significantly thicker than layer 2, (η →∞ ), the stress inside layer 1 is 
approaching zero. In the area between those two boundary cases, not only that the stress at the surface 
of layer 1 has the negative value, but its intensity is significantly higher than that of the stress inside 
the layer. This means that at the layer surface will appear the significant tensile stress, though it is 
exposed to compressive load. Values for η, which correspond to such tensile stresses, are responsible 
for appearance of the so-called "crazing" mode of the layer’s destruction. From equation (17) can be 
seen that the tensile stresses exist at the surface of layer 1 for all the values of the layer relative 
thickness ( 1 2/h hη = ), that are higher than the values that are satisfying the equation . 
For the small values of Σ, i.e., when

2 33 2η ηΣ + Σ =1

21E E<< , the minimal value for relative layer thickness, for which 
still exist normal stresses is 3 (1 / 2 )η Σ=

2

. For Σ=1, i.e., when layers’ materials are the same, the 
minimal value is η=1/2. For the case when 1E E>> , i.e., for large values of Σ, the minimal value of η 
is 2 (1 / 3 )η Σ= . 

4. Conclusion 

In the paper are presented the theoretical fundamentals for determination of the driving force for the 
interfacial fracture in the two layer sample in conditions of the environmental temperature variations. 
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The energy release rate is determined in terms of the environmental temperature change increase. It 
was noticed that the energy release rate has the tendency of increase with increase of the temperature 
difference. Also presented is the variation of the stress inside and at the surface of the layer in terms of 
the layer relative thickness. It was found that the stress at the surface layer has the negative value with 
respect to the thermal stress, as well as that its intensity significantly exceeds the values of stresses 
inside the layer. This means that at the surface layer will appear the tensile stresses, which can lead to 
the crazing mode layer destruction. 

Analysis performed in this paper is limited for the case when the two layer sample is exposed to 
uniform temperature. The case when the layers external surfaces temperatures are variable remains for 
the future analysis. 
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