
 

 

PERISTALTIC FLOW OF A FRACTIONAL SECOND GRADE 
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by 
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The investigation is to explore the transportation of a viscoelastic fluid with 

fractional second grade model by peristalsis through a cylindrical tube under the 

assumptions of long wavelength and low Reynolds number. Analytical solution of 

problem is obtained by using Caputo’s definition. It is assumed that the cross-

section of the tube varies sinusoidally along the length of tube.  The effects of 

fractional parameter, material constant and amplitude on the pressure and friction 

force across one wavelength are discussed numerically with the help of illustrations. 

It is found that pressure decreases with increase in fractional parameter whereas 

increases with increase in magnitude of material constant or time. The pressure for 

the flow of second grade fluid is more than that for the flow of Newtonian fluid.  

Keywords: Peristalsis; Fractional second grade model; Pressure; Friction force; 

Caputo’s fractional derivative. 

1. Introduction 

Peristalsis is a form of fluid transport generated by a progressive area of contraction or 

expansion along the walls of a distensible tube containing fluid. It occurs in many biological and 

biomechanical systems, such as urine transport from kidney to bladder through the ureter, 

movement of chyme in the gastrointestinal tract, the movement of spermatozoa in the ducts 

afferents of the male reproductive tract and the ovum in the female fallopian tube, the locomotion 

of some warms, transport of lymph in the lymphatic vessels and vasomotion of small blood 

vessels such as arterioles, venules and capillaries are the examples of physiology and finger, 

roller pumps and heart lung machine are few examples of biomechanical system. In the 
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mechanical point of view, the idea of peristaltic transport was firstly investigated by Latham [1]. 

Since then, other workers [2-5] studied peristaltic flow theoretically and they used perturbation 

techniques and long wavelength and low Reynolds approximation to obtain the solution of 

problem. They considered two dimensional and axi-symmetric flows.  

Fractional calculus has encountered much success in the description of viscoelastic 

characteristics. The starting point of the fractional derivative model of non-Newtonian model is 

usually a classical differential equation which is modified by replacing the time derivative of an 

integer order by the so-called Riemann–Liouville fractional calculus operators. This 

generalization allows one to define precisely non-integer order integrals or derivatives. Fractional 

second grade model is the model of viscoelastic fluid.  In general, fractional second grade model 

is derived from well known second grade model by replacing the ordinary time derivatives to 

fractional order time derivatives and this plays an important role to study the valuable tool of 

viscoelastic properties.  Some authors [6-17] have investigated unsteady flows of viscoelastic 

fluids with fractional Maxwell model, fractional generalized Maxwell model fractional, second 

grade fluid, fractional Oldroyed-B model, fractional Burgers’ model and fractional generalized 

Burgers’ model through channel/ annulus/ tube and solutions for velocity field and the associated 

shear stress are obtained by using Laplace transform, Fourier transform, Weber transform, Hankel 

transform and discrete Laplace transform. Some important works [18-21] such as; the flow of 

viscoelastic fluids, the effects of heat transfer on flow, thermal and hydrodynamic characteristics, 

and hydromagnetic flows, through sine, triangular, arc-shaped channels, and vertical channel 

have been studied. 

Recently, Tripathi et al. [22] have studied the peristaltic flow of fractional Maxwell fluids 

through a channel under long wavelength and low Reynolds number approximations by using 

homotopy perturbation method and Adomian decomposition methods. Further, Tripathi et al. [23] 

have reported the slip effects on peristaltic transport of fractional Burger’s fluids through a 

channel and solution is obtained by homotopy analysis method. In this paper, we study the 

peristaltic transport of viscoelastic fluid with fractional second grade model through a cylindrical 

tube under the assumptions of long wavelength and low Reynolds number. Caputo’s definition is 

used to find fractional differentiation and numerical results of problem for different cases are 

discussed graphically. The effects of fractional parameter, material constant, and time on the 

pressure rise and friction force across one wavelength are discussed. This model is applied to 

study of movement of chyme through the small intestine and also applicable in mechanical point 

of view.  
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2. Caputo’s definition 

Caputo’s definition [24-27] of the fractional –order derivative is defined as  
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3. Mathematical formulation     

The constitutive equation for viscoelastic fluid with fractional second grade model is 

given by  
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where,  and is the time, shear stress, rate of shear strain and material constants, γ,~,~ St ,~
1λ μ  

is viscosity, and α  is the fractional time derivative parameters such that 10 ≤< α . This model 

reduces to second grade models with 1=α , and Classical Navier Stokes model is obtained by 

substituting 0~
1 =λ . 

The governing equations of the motion of viscoelastic fluid with fractional second grade 

model for axi-symmetric flow are given by  
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where ρ  is fluid density, δ  is defined as wave number; pcvutr ,,,,,,, φλ  and Q  stand for 

wavelength, radial coordinate, time, axial velocities, radial velocities, wave velocity, amplitude, 

pressure, and volume flow rate respectively in non-dimensional form, and 

and pvrx ~,~,~,,~,~ φut ~,~ Q~  represent the corresponding physical parameters in the dimensional 

form. 

Introducing the non-dimensional parameters and taking long wavelength and low 

Reynolds number approximations, Eqs.(2) reduce to 
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  Boundary conditions are given by 
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  Integrating Eq.(4) with respect to ,r  and using first condition of Eq.(5), the velocity 

gradient is obtained as   
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  Further integrating Eq.(6) from 0  to r , we get the axial velocity as 
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  The volume flow rate is defined as   , which, by virtue of Eq.(7), reduces to ∫=
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  The transformations between the wave and the laboratory frames, in the dimensionless 

form, are given by 

                   (9) ,,,1,,1 2hQqvVuUrRxX −==−==−=

where, the left side parameters are in the wave frame and the right side parameters are in the 

laboratory frame.  

  We further assume that the wall undergoes contraction and relaxation is mathematically 

formulated as  

    .                                                                          (10)    )(cos1 2 Xh πφ−=

  The following are the existing relations between the averaged flow rate, the flow rate in 

the wave frame and that in the laboratory frame: 
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  Eq.(8), in view of Eq.(11) gives 
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  Using Caputo’s definition in Eq.(12), we get   
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The pressure difference and friction force across one wavelength are given by 
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4. Numerical results and discussion 

 The purpose of this section is to discuss the effects of various emerging parameters such 

as fractional parameter (α ), material constant ( 1λ ), time ( ), and amplitude (t φ ) on pressure 

difference across one wavelength ( pΔ ) and friction force across the one wavelength ( ) with 

the help of graphical illustrations. Mathematica 5.2 version is used to plot the figures.    

F
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Figs.1-4 depict the variation of pressure ( pΔ ) with averaged flow rate ( Q ) for various 

values of α , 1λ , , and t φ . It is observed that there is a linear relation between pressure and 

averaged flow rate, also an increase in the average flow rate reduces the pressure and thus, 

maximum averaged flow rate is achieved at zero pressure and maximum pressure occurs at zero 

averaged flow rate.  

Fig.1 shows that the pressure rise vs. averaged flow rate for various values ofα  at 

4.0=φ , , 5.0=t 0.11 =λ .  It is evident that the pressure decreases with increasing in α . It is 

physically interpreted that the fractional behavior of second grade fluids increases, the pressure 

for flow diminishes.  The variation of pΔ  with Q  for various values of 1λ  at 4.0=φ , 

,5.0=t 5/1=α  is presented in Fig.2. It is revealed that the pressure increases with increasing 

1λ . This means the viscoelastic behavior (in the sense of 1λ ) of fluids  increases, the pressure for 

flow of fluids decreases i.e. the flow for second grade fluid is required more pressure than that for 

the flow of Newtonian fluids.  Figs.4 depicts the variation of pΔ  with Q  for various values of  

φ   at 0.1=1λ , 5/1=α , . It is found that the pressure increases with increasing 5.0=t φ . Fig.5 

shows that the graph between  and pΔ Q  for various values t  at 4.0=φ , 0.11 =λ , 5/1=α  

and this figure reveals that, the effect of time on pressure is similar to that of amplitude. 

Maximum flow rate are unique for various values of α , 1λ , , but it is different for t φ .   

Figs.5-8 show the variations of friction force ( ) with the averaged flow rate (F Q ) under 

the influences of all emerging parameters such as α , 1λ ,  and t φ . From figures, It is observed 

that the effects of all parameters on friction force are opposite to the effects on pressure with 

averaged flow rate.  

5. Conclusions 

Fractional models of viscoelastic fluids play important role in physics of polymers and 

rheology. One of the fractional models of viscoelastic fluids named as fractional second grade 

model has been taken to study the peristaltic flow behavior through the cylindrical tube. The 

Caputo’s definition is used for differentiating the fractional derivatives. It is evident that less 

pressure is required to flow of the fractional second grade fluid ( 10 << α ) in compare to the 

flow of second grade fluid ( 1=α ). It is revealed that the flow of Newtonian fluid ( 01 =λ ) is 

taken less effort than that of the second grade fluid ( 01 >λ ). It is also found that the pressure 
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increases by increasing the amplitude or time. The characteristics of pΔ  with Q , and F  with 

Q at various parameters, are found to be opposite in nature.   
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Fig.1. Pressure vs. averaged flow rate for various values of α  at 4.0=φ , ,5.0=t 11 =λ  
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Fig.2. Pressure vs. averaged flow rate for various values of 1λ  at 4.0=φ , 5.0=t , 5/1=α  
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Fig.3. Pressure vs. averaged flow rate for various values of t  at 6.0=φ , 5/2=α , 11 =λ  
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Fig.4. Pressure vs. averaged flow rate for various values of φ  at 5.0=t , 5/1=α , 11 =λ  
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Fig.5. Friction force vs. averaged flow rate for various values of α  at 4.0=φ , ,5.0=t 11 =λ  
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Fig.6. Friction force vs. averaged flow rate for various values of 1λ  at 4.0=φ , ,5.0=t 5/1=α  
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Fig.7. Friction force vs. averaged flow rate for various values of  at t 4.0=φ , 5/2=α , 11 =λ  
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Fig.8. Friction force vs. averaged flow rate for various values of φ  at 5.0=t , 5/1=α , 11 =λ  
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