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Most people would face a problem if there is a need to calculate the mole fraction of
a substance A in a gaseous solution (a thermodynamic system containing two or
more ideal gases) knowing its molarity at a given temperature and pressure. For
most it would take a lot of time and calculations to find the answer, especially be-
cause the quantities of other substances in the system are not given. An even greater
problem arises when we try to understand how special relativity affects gaseous
systems, especially solutions and systems in equilibrium. In this paper formulas are
suggested that greatly shorten the process of conversion from molarity to mole frac-
tion and give us a better insight into the relativistic effects on a gaseous system.
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Introduction

Most people including specialists believe that a model was made that absolutely de-
scribes the thermodynamic system consisted of an ideal gas. Indeed the ideal gas state equation
connects well all the parameters in an ideal gas system. But if we try to solve the following prob-
lem: a thermodynamic system consists of two ideal gases A and B which are contained in some
volume V (not given) at a given temperature 7, and at given total pressure P. The molarity of gas
A is given. Find the mole fraction of ideal gas A!

In its basic form the ideal gas state equation can not help us solve this problem, simply
because it does not include mole fraction. Most people including specialists would say this is
impossible, and would require additional data, for example, volume. But is additional data really
necessary, or can the solution be found more easily even without them?

Theoretical analysis

Let us consider. In case the chemical system consists of two monoatomic ideal gases A
and B then the state of the system is given as:

PV=(n, +ng)RT (1)
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where ¥ is the total volume of the system, P its total pressure which equals the sum of partial
pressures of gases in it, n, is the quantity of ideal gas A, and ny — the quantity of ideal gas B.
As the definition of the molarity is:

n
[4]= 7A )
by combining expresions (1) and (2) we have:
[4]= _ MP 3)
(ny +ng)RT

where y , = n,/(n, + ng) is the mole fraction of the substance A. Therefore:

_., £
)= ia 4)
or
7 :[A]g 5)

This expression presents the relations between two ways of expressing the concentra-
tion in chemistry.
By replacing [4] from expression (2) to relation (5) we obtain:
n, RT
= ~ 6
XA 13% (6)
The use of egs. (4), (5), and (6) to solve the problem given in the introduction will be
discussed later, as well as its application in relativistic thermodynamics.

Applications

Using eq. (5) the problem above which seemed unsolvable becomes a piece of cake.
All we need to know to calculate the mole fraction in a given system is its temperature, total
pressure, and molarity of the substance for which we are calculating mole fraction. Note that
since no parameters for other substances in the system are required for egs. (4) and (5) we can
easily transform from one type of concentration to another without even knowing about the
presence of other substances in the system.

As we saw in the introduction some problems can not be solved without eqgs. (5) and
(6). On the other hand there are some problems that can be solved without egs. (5) and (6), but
that require extensive calculations, and a lot of time.

For example to find the equilibrium constants K, and K. for the reaction
N,0, ®2NO,, if it is known that 20% of initial quantity (mols) of N,O, has dissociated at a
temperature of 300 K, before the system reached equilibrium (the total pressure of the equilib-
rium mixture is 101.3 kPa). Solving this problem becomes much easier, shorter and faster if we
do use egs. (5) and (6).

The egs. (5) and (6) can be used to analyze the effects of special relativity on a thermo-
dynamic system. A thermodynamic system consisted of two ideal gasses A and B is in relativis-
tic movement. According to special theory of relativity the relativistic contraction of space oc-
curs:

X'=X,[l-— (7)
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where X’ is the length of the system in relativistic movement, v — the velocity of the system, and
¢ —the speed of light. The consequence of relation (7) is, according to [ 1], relativistic volume:
2
v=v -2 ®)
c2
and according to [2] relativistic molar concentration:

[4]

[4] = )

v
c2
Now we can analyze the relativistic effects on a system using eqs. (5) and (6).
The thermodynamic system given above is now in relativistic movement. The ob-
server 1 rests, while the observer 2 is in the system, moving with it. The observer 2 doesn’t no-
tice any changes in the system. The observer 1 notices according to expressions (7), (8), and (9)
relativistic space contraction, volume, and molarity. By applying eq. (5) to a system in relativis-
tic movement we obtain according to [3]:
,R'T’

"=TA 10
2 =[4] I (10)
The mole fraction according to conservation law is not affected by relativity, so:
x=x (In
Now we substitute eq. (5) and (10) to (11):
[ART _[A]R'T (12)

P P’

1907 Planck demonstrated that pressure is Lorenz invariant [4]. [f P'= P eq. (12) be-
comes:
[A]IRT=[A]R'T’ (13)

where according to Ohsumi [2] [4]' = [4A)/[1 — (V}/c*)]V2,

Landsberg [5, 6], and others [3, 7, 9-12] stated that temperature should be Lorentz in-
variant. so 7= T"

In that case, from eq. (13) we can conclude that R must be Lorenz co-variant.

R'=R[1-X (14)

This alow us to conclude that the Boltzmann constant is Lorenz co-variant too:

2
Ky =k3‘/1—V_ (15)
02

which is in agreement with the conclusions of Avramov [7]. This statement presents a problem
for statistical thermodynamics, since it implies that the entropy must be co-variant as well.

However, entropy is a state function and can not be Lorenz co-variant. The Planck’s
theorem of entropy invariance [4], as well as Ott [8], and many other authors such as
Bormashenko [9] and Popovi¢ [10] confirm the entropy invariance.
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Entropy is given as:

S = kglnW (16)
is the Boltzman constant, where W is the probability given as:
W= (CV)N (17)
In relativistic conditions the equation above becomes:
w'=(C'V)W

v2
N=N'" C=C" V'=V,[1-—
c2

Let us back to the eq. (15). ky is Lorentz invariant claim Bormashenko [11] in opposite
toeq. (15). Now, if S=3S', and kz = k', then: W = W' In that case there are no difference between
egs. (16) and (18):

S" = k'gInW’ (18)

Solution is to take effective volume in calculation [12]. It means that one liter is still
one liter in relativistic condition even with different nominal value:

'ef: Vef Vef =V

where V'is the volume at rest, V' — the relativistic volume, V; — the effective volume, and V', —
the relativistic effective volume. Effective volume does not depend on speed of the inertial sys-
tem, so in such a way it is possible for relativistic space contraction to be real and for thermody-
namic parameters to be Lorentz invariant.

Conclusions

For a solution containing ideal gasses A and B the relation of their mole fraction and
molarity is given by eqgs. y, = [A](RT/P) and y , = n,RT/PV.

This relation is applicable to any thermodynamic system containing two or more ideal
gasses. These relations can also be used in relativistic thermodynamics.
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