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This study proposes a hybrid neural network architecture that 

integrates error backpropagation (EBP) optimization with TRNSYS 

co-simulation, specifically targeting the performance enhancement 

of air-source heat pump (ASHP) systems in public buildings. The 

calculated optimal dynamic return water temperature setting was 

input into an established low-temperature air-source heat pump 

model for feasibility verification. Results showed: fan energy 

consumption rose by 13.0% vs. the traditional control method, while 

unit energy consumption dropped by 8.60% and per-unit-area system 

energy consumption decreased by 6.99%. The optimized method was 

applied to a typical air-source heat pump heating system in 

Changchun during the heating period on high-conditioning days. In 

low-conditioning mode, daily energy consumption fell from 287 kW·h 

(traditional) to 262 kW·h (optimized) – an 8.7% reduction. In high-

conditioning mode, it decreased from 737.3 kW·h to 710.5 kW·h, a 

3.6% drop. When used in three typical such systems across three 

cities in severely cold regions, the optimized method cut per-unit-

area unit energy consumption by 5.15%-9.31% and per-unit-area 

system energy consumption by 6.15%-7.37% compared to the 

traditional method. By dynamically controlling the optimal return 

water temperature of the simulation system, energy consumption has 

been reduced, which has contributed value to achieving China's dual 

carbon goals. 

Key words: air source heat pump; TRNSYS; Artificial Neural 

Network; Operation optimization; Saving energy 

1. Introduction 

Reducing carbon dioxide emissions has emerged as a critical strategic priority for nations 
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worldwide. China has committed to achieving carbon peaking by 2030 and carbon neutrality 

by 2060[1], with particular urgency given that the building sector ranks among the nation's three 

most energy-intensive industries[2]. Operational building activities in China generated 

substantial carbon emissions in 2020, comprising: 1) Direct emissions: 550 million tons of CO₂ 

(25% of total sector emissions) 

2) Indirect emissions from electricity consumption: 1.15 billion tons of CO₂ (53%) 

3) Heat-related emissions: 470 million tons of CO₂ (22%)[3] 

In recent years, the advantages of using low-heat sources and a pollution-free 

environment of air source heat pump (ASHP) have attracted more and more attention[4]; 

however, their operational efficiency in cold climates remains constrained by frost 

accumulation[5]. So many scholars have realized the efficient operation of the ASHP system by 

integrating the system and using other renewable energy sources, and achieved relatively good 

results, and found that hybridization with renewable energy demonstrates significant potential. 

Yubo Wang et al[6] integrated solar-thermal systems with ASHPs, achieving a 3.86-year 

dynamic payback period through enhanced economic viability. Jiazheng Wang et al[7] further 

developed a near-zero energy building solution using solar-driven ASHPs, with exergy 

optimization enabling 23% improvement in energy supply selection efficiency. Wenyi Wang 

et al[8] developed a Modelica-based dynamic simulation framework to optimize ASHP 

operational efficiency through intermediate pressure setpoint modulation. While conventional 

control methodologies have achieved fundamental operational stability in ASHP systems, their 

inherent limitations in addressing nonlinear thermal load dynamics, transient environmental 

disturbances, and multi-objective optimization requirements underscore the critical need for 

advanced intelligent control strategies, and advanced control frameworks substantially improve 

operational stability. Wenyi Wang et al[9] validated model predictive control (MPC) as a robust 

strategy for frost mitigation, while Changxin Xing et al[10] implemented dynamic objective 

function weighting to balance precision and energy costs, yielding 4.7% additional savings. 

Neural network applications show particular promise: Soowon Chae et al[11] developed an 

artificial intelligence-enhanced control system, elevating refrigeration and heating COPs by 

1.52% and 3.58% respectively. Thomas Dengiz et al[12] combined artificial neural networks and 

heat pump intelligent control, and found that it could reduce power costs through time-variable 

electricity prices, and the results showed that the developed PSC-ANN outperformed traditional 

control strategies and was able to use other similar buildings. At the same time, many 

researchers optimized the operating efficiency of the system by studying its components. 

Shipeng Yu et al[13] engineered a bowl-finned tube evaporator that boosts COP by 7.4~17.3% 

and extends effective heating duration by 100~400%, concurrently raising outlet temperatures 

by 0.3~1.4 °C. Chenjiyu. Liang et al[14] implemented alternating defrosting through multi-heat 

exchanger networks, restricting heating capacity decay to <10% while maintaining a seasonal 

COP of 4.05. The ASHP system was prone to frost due to the influence of the external 

environment, Mengjie Song et al. 's [15] identification of peak defrosting efficiency (51.8%) at 

933 gfrost mass, and Minglu Qu et al.'s [16] optimal compressor-expansion valve coordination 

(90 Hz frequency, 80% valve opening), reducing defrost time to 440 s with sustained 5.23 kW 

heating output. Yoong Chung et al[17] designed heat exchanger tube bundle to improve the frost 

formation problem of air source heat pump and found that the control method of pressure 
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difference sensor could improve the reliability of the system Lei Chen et al[18]. further advanced 

dynamic defrosting thresholds, increasing average heating capacity by 101~278 W compared 

to conventional methods. There are also many scholars researching on the energy-saving 

performance of the system, and system optimizations demonstrate tangible decarbonization 

impacts. Hlanze Philani et al[19] achieved 27.1% cost reductions through phase-change material 

integration, while Yuying Sun et al[20] reported a 22.88% COP improvement and 26.16% energy 

savings via real-time water temperature modulation. Large-scale evaluations by Milev George 

et al[21] revealed 106% cold-season energy demand increases across 10 cities, emphasizing 

building insulation's critical role in system efficiency. In recent years, new digital tools have 

increased the predictive power of building systems. Emerging digital tools enhance predictive 

capabilities. Dong Liujia et al[22] validated multi-input extremum seeking control through 

Modelica-based simulations, and Ruixin Lv et al[23] developed an FCPM-SBLS digital twin 

model that reduces ASHP prediction errors by 19~34%, significantly improving energy 

management precision. Xintian Li et al[24] proposed an optimal water temperature scheduling 

method to reflect the relationship between usage and time, and found that this method can 

improve the response capacity and reduce the operating cost of the system. 

While existing studies have explored the integration of artificial intelligence algorithms 

with ASHP systems, current prediction frameworks struggle to address the dynamic thermal 

load fluctuations inherent in complex building heating scenarios. To bridge this critical gap, 

this study proposes a Backpropagation (BP) neural network-based load forecasting method 

specifically tailored for public buildings. The methodological advantages are twofold: 

 It could better capture the nonlinear dynamic changes of building load and solve 

the problem of low accuracy of traditional control prediction. 

 After training and verification, the method showed low error under various 

working conditions. 

This study employs TRNSYS simulation to evaluate ASHP system performance through 

three critical energy metrics: water pump consumption, fan power demand, and unit operational 

efficiency. Comparative analysis of control strategies across multiple urban contexts reveals 

substantial optimization potential. 

2. Simulation setup  

2.1. Establishment of neural network model 

2.1.1 Introduction to Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational models inspired by the structure 

and function of biological neural systems, possessing adaptive, nonlinear mapping capabilities 

and parallel processing capabilities. As shown in Fig. 1, it is a network composed of multiple 

artificial neurons, each of which receives input signals and communicates with other neurons 

through weighted connections. The connection weights of these neurons are adjusted through 

the training process to minimize the prediction error or achieve the optimization goal of a 

specific task. The basic formula for their calculation is as follows: 

𝑦 = 𝑓(𝑤∗𝑥 + 𝑏)                            (1) 
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Where 𝑤∗ indicates the weight matrix, U is the bias matrix. 

The structure of an artificial neural network typically consists of an input layer, a hidden 

layer, and an output layer, with the hidden layer possibly having multiple layers. Each neuron 

performs the following calculation steps: it weights and sums the input signals, then undergoes 

a nonlinear transformation through an activation function, and finally generates the output. This 

complex connection and nonlinear mapping enable neural networks to capture complex 

relationships and patterns in data, as shown in Fig. 1. 

 

Fig. 1 Neuronal connection map 

 

2.1.2 Construction of an artificial neural network model 

The design of the BP network in this study mainly includes aspects such as the input 

layer design, the hidden layer, and the connections between the hidden layers. 

When designing the input layer of a neural network, one of the important considerations 

is feature selection and preprocessing. Select the relevant features related to the problem to 

ensure data quality. Utilize domain knowledge to guarantee that the neural network can 

effectively capture key information. In the third chapter of this paper, the correlation analysis 

method was employed to select 5 variables from numerous indicators for analyzing heat and 

cold loads as the input vector for the neural network's input layer. 

In neural networks, the hidden layer is a layer or multiple layers of neurons located 

between the input layer and the output layer. The main function of the hidden layer is to perform 

nonlinear transformations and feature extraction on the input data, in order to better fit complex 

functional relationships. The selection of the number of nodes affects the capacity and 

complexity of the model. A larger number of nodes may lead to overfitting of the model, while 

a smaller number of nodes may result in underfitting. The selection of the number of hidden 

layer nodes in BP networks is uncertain. The more nodes, the stronger the expression ability, 

but the computational time also increases linearly. It is theoretically impossible to determine 

the optimal number of nodes analytically, and experience and trial-and-error methods are 

required. Generally, the rule of thumb is to set it as several times the square root of the number 

of nodes in the input and output layers. However, the specific value needs to be determined 

based on factors such as complexity and data volume. The design of the number of hidden layer 

nodes requires a balance between network performance and efficiency. The number of hidden 

layer nodes in this paper is defined according to formula 2-31: 

𝑀 = √𝑛 +𝑚 + 𝑎                             (2) 
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In the neural network, 𝑚  and 𝑛  represent the number of output neurons and input 

neurons, respectively, and 𝑎 is a constant within the range of [0, 10]. The number of hidden 

layer neurons selected in this paper is 9. 

The number of neurons in the output layer also needs to be determined based on the 

abstract model obtained from the actual problem. In this paper, it is necessary to predict the 

cooling and heating load data of a building using historical data. Therefore, the number of 

output layer nodes is 1, representing the magnitude of the load. 

The activation function used in the output layer is generally the Sigmoid function. The 

basic formula of the Sigmoid function is as follows: 

𝑓(𝑥) =
1

1+𝑒−𝑥
                              (3) 

The architecture diagram of the neural network used for predicting the heating and 

cooling loads of buildings is shown in Fig. 2. 

 

Fig.2 Neural network architecture diagram 

 

2.1.3 Program execution flow 

1) Import the training set 

Add an event listener for the "Click Data" button, and this will activate the data reading 

function. As follows: 

function ButtonPushed(app, event) 

The first step of the program is to read the training data and store it in memory. The 

following uigetfile function can be used to open the window for selecting the data table. 

[filename,pathname]=uigetfile('*.xlsx', '*.xls','Select an Excel file'); 

After selecting the file where the data is located, the following is the process of storing 

the input variables in a matrix named "app.train_Input" using the "assignin" function. 

assignin("base","train_Input",app.train_Input); 

To enhance user interaction and improve the user experience of the program, the

 following statement is used to display the retrieved data (if normalization is selected, 

then the normalized data will be displayed). app.UITable.Data=app.train_Input; 
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By adding a dropdown component, two options, "Input Variable" or "Expected 

Output," are added to the dropdown box, enabling the selection of input variables and

 expected outputs. 

During this process, if the "Normalization" dropdown box is selected, the data 

will be normalized as follows: app.train_Input=(app.train_Input-app.train_Input_mi)./(app.

train_Input_ma 

app.train_Input_mi); 

2) Model establishment and training 

By adding the selection dropdown component, the input variables, the number of hidden 

layer nodes, the output variables, the learning rate, the number of iterations, etc. of the neural 

network can be customized. Add a start button, and add an event listener to the "start button" 

to start training the data as follows: 

function Button_2Pushed(app, event); 

After the start button is executed, the weight matrices and threshold matrices between 

the input layer and the hidden layer, as well as the weight matrices and threshold matrices 

between the hidden layer and the output layer, are initialized first. They are generated through 

the random function rand(), as follows: 

app.W1 = 0.5 * rand(app.Hidd_Num, app.Input_Num) - 0.1; 

app.B1 = 0.5 * rand(app.Hidd_Num, 1) - 0.1; 

app.W2 = 0.5 * rand(app.Out_Num, app.Hidd_Num) - 0.1; 

app.B2 = 0.5 * rand(app.Out_Num, 1) - 0.1; 

An example of a weight matrix and threshold matrix with 9 hidden layer nodes and 5 

input layer nodes is as follows: 

𝑎𝑝𝑝.𝑊𝑖 = [

0.3073 0.3824 0.2961 0.0961 0.2474
0.3528 -0.0211 0.3797 0.2277 0.0585
-0.0365 0.3852 0.2278 -0.0144 0.3751
0.3566 0.3785 -0.0821 0.2530 -0.0827

0.2161 0.1426 0.3245 -0.0840 0.1193
-0.0512 0.3001 0.3669 0.0384 0.0907
0.0392 -0.0290 0.2393 -0.0769 0.2827
0.1734 0.1108 0.2788 -0.0514 0.2975
0.3787 0.3578 0.2715 0.3117 -0.0065

]𝑎𝑝𝑝. 𝐵𝑖 = [

0.1448
0.1227
0.2231
0.2546
0.2773
0.0380
0.2398
0.2275
-0.0186

] 

After adding the selection and initializing the weights and thresholds, the iterative 

training begins. The basic formula for the output of the hidden layer is defined as: After the 

weights and thresholds are initialized, the iterative training starts. The basic formula for the 

output of the hidden layer is defined as: 

𝑦1 = 𝑙𝑜𝑔⁡sin(𝑤1 ∗ 𝑥
′ + 𝑏1)                      (4) 

Where 𝑤1 is the weight matrix between the hidden layer and the input layer, the 𝑏1 is 

the bias matrix between the hidden layer and the input layer. 

The output formula of the output layer is defined as: 

𝑌 = 𝑙𝑜𝑔(𝑤2 ∗ 𝑦1 + 𝑏2)                         (5) 

Where 𝑤2 is the weight matrix between the hidden layer and the output layer, the 𝑏2 

is the bias matrix between the hidden layer and the output layer. 

An iteration is a process of calculating the output matrix of the output layer. After one 

iteration, the error between the actual value and the output will be calculated. Then, the gradient 
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of each weight will be computed through backpropagation. The gradient represents the rate at 

which the error changes with the variation of the weight. Then, the weights will be adjusted 

using the gradient descent algorithm to reduce the error. The gradient calculation is as follows: 

Delta2=train_Error.*dlogsig(Out_In,Out_Out); 

Delta1=app.W2'*Delta2.*Hidden_Out.*(1-Hidden_Out); 

By continuously iterating, the weights are updated, enabling the neural network to 

gradually learn and fit the patterns of the training data. The weight update is implemented as 

follows: 

app.W2=app.W2+app.lr*dW2; 

app.B2=app.B2+app.lr*dB2; 

app.W1=app.W1+app.lr*dW1; 

app.B1=app.B1+app.lr*dB1; 

This iterative process will be repeated continuously until the performance of the network 

reaches an acceptable level or until the conditions for stopping the training are met. Through 

successive iterations, the neural network gradually learns and optimizes its weights, thereby 

improving its performance on the training data. 

2.2. Air source heat pump heating simulation system  

2.2.1 Physical model of ASHP system 

The building in this paper is a public building with 2 floors, 3.9 m height, and a total area 

of 1718.04 m2. Tab. 1 presents the parameters of the simulated building, while Fig. 3 illustrates 

the heating model utilising a TRNSYS low-temperature air source heat pump. 

 

Tab.1 Building wall orientation and parameter setting 

Direction Item Area (m2) 
Coefficient of transfer heat 

(W (m2
∙K)⁄ ) 

North 
North external wall 102.53 0.482 

North external windows 49.32 1.24 

South 
South external wall 102.53 0.482 

South external windows 92.48 1.24 

West 
West external wall 72.09 0.482 

West external windows 12.33 1.24 

East 
East external wall 72.09 0.482 

East external windows 12.33 1.24 

\ Roof 1718.04 0.438 

\ Floor 1718.04 0.589 
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Fig.3 Component distribution model in the TRNSYS air source heat pump 

 

2.2.2 Mathematical model of ASHP system 

The air side heat exchanger is a fan coil. There are many reasons affecting the heat 

transfer effect of a fan coil in practical applications. The actual application of fan coil is 

simplified to facilitate the calculation; its heat exchange capacity is: 

 

Q=UA∆T                                  (6) 

 

Where Q indicates heat exchange capacity, usually in W or kW, U is the efficiency of 

heat transfer,⁡ W (m2
∙K⁄ ) , A is exchange area, the unit is m2 , ∆T  is the difference of 

temperature. 

The heat production capacity of the compressor (HC) is calculated by the following 

formula: 

 

HC=mdotCp(Tout − Tin)                             (7) 

 

Where mdot is the mass flow rate of the refrigerant, kg s⁄ , the Cp is the specific heat 

capacity, Tout − Tin indicates the difference of temperature. 
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The theoretical power can be calculated by the theoretical volume of the compressor 

(VFR), the pressure difference (Pout − Pin), the temperature difference, and the character of the 

refrigerant, as follows: 

 

TP=VFR∙(Pout − Pin)
CpTin

η
                          (8) 

 

VFR=
PinVinTout

PoutTin
                               (9) 

 

Where TP is the theoretical power, W, Pin is the return air pressure, Pa, Vin is the return 

volume, m3, Tout is the exhaust temperature, ℃, Pout is the exhaust pressure, Pa,⁡ Tin is the 

suction temperature, ℃, the η is the efficiency of the compressor. 

The coefficient of performance (COP) is the ratio of the heat produced to the theoretical 

power, as follows: 

 

COP=
HC

TPe
                                (10) 

 

Where TPe is the input power of the compressor, kW. 

2.2.3 System control logic 

The control mode of the ASHP system included the control of the unit and the fan coil. 

In this paper, the ASHP was controlled by the return water temperature, and the setting 

temperature of the return water Ta-set, and limited values (T1, T2) were set; the start and stop of 

the unit were controlled by the difference value between the set temperature of the return water 

and the real temperature of the return water. Fig. 4 presented the control logic of the system, 

there into T1=1.1 ℃, T2=2.1 ℃, obviously a unit was started when the temperature of return 

water decreased to Tw-set-T1, other unit was started when the water temperature decreases up to 

Tw-set-T2, when the temperature rose to Tw-set+T2, all units were shut down, when the temperature 

decreased to Tw-set+T1, a unit was shut down and the other was kept running. Unlike traditional 

single-threshold or fixed-setpoint controls, this hierarchical hysteresis strategy demonstrates 

three key improvements: 1) Enhanced load adaptability: Mitigates short-cycling through 

staggered activation thresholds, reduces compressor wear compared to on/off control, 2) Energy 

efficiency optimization: Maintains thermal inertia utilization through asymmetric temperature 

bands, decreases partial-load operation time versus PID-only systems, 3) Improved thermal 

stability: Limits indoor temperature fluctuations to ±0.5°C (vs. ±1.2°C in conventional 

methods), achieves reduction in fan coil energy consumption, and this dual-differential control 

architecture effectively balances transient load demands with equipment protection 

requirements. 
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Fig.4 Unit number control logic 

 

In the practical application of ASHP, frequent starting and shutting down of the unit in a 

short period will greatly affect the life of the unit and increase maintenance costs, the continuous 

running time and continuous shutdown time of the unit were set to a minimum value, the 

minimum startup and shutdown duration in the TRNSYS system model in this article was set 

to 5 minutes.  

The fan coil control mode was similar to the unit’s start-stop control mode. Both the 

temperature limit value t and the space temperature setting value Ta-set were defined. By using 

the difference between the internal set temperature and the actual indoor temperature, the 

temperature limit value t, which was chosen in this work and ranged from 0.5 to 1.0 °C, 0.6 °

C, was used to regulate the wind speed and fan coil start-stop, and the control mode was 

displayed in Fig. 5. 

Turn on the fan coil wind speed low speed switch when the room temperature is below 

the Ta-set temperature in winter heating mode, and turn on the fan coil wind speed medium speed 

switch if the temperature dropped to Ta-set-t at the point, and turn on the fan coil wind speed 

high speed switch if the temperature dropped to Ta-set-2t, and when the room gradually warmed 

up and the temperature rose to Ta-set-t, turn on the medium speed mode, turn on the low-speed 

mode and continue warming when the temperature reached the set temperature Ta-set, , and turn 
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off the fan coil if the temperature exceeded the set temperature Ta-set. 

 

Fig.5 Fan coil logical control 

 

2.2. Control mode of ASHP optimal return water temperature setting value  

This study examined the fan coil’s water supply and return temperatures in order to 

regulate the fan coil’s water supply temperature and guarantee indoor comfort. The specific 

control mode was exhibited in Fig. 6, and as a recognized thermal comfort indicator, PMV 

could reflect the subjective feelings of the human body towards the environment. at the same 

time, the PMV was introduced in the control mode, which could dynamically adjust the heating 

parameters, make the indoor environment closer to a comfortable space, although PMV has 

certain difficulties in practical application, a neural network model was imported, which 

significantly reduced the implementation cost, while improved the comfort and energy-saving 

effect of the system. 

PID controller Fan coil Indoor environment

Heating capacity

Heat load 

predicted value
Difference 

value

Water supply 

temperature

Heat 

transfer

External 

disturbance

Actual PMV

PMV=-1

PID controller
Optimum return water 

temperature setting

Difference 

value

Outlet water 

temperature

 

Fig.6 Return water temperature controls the indoor temperature 
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2.3. Control mode of ASHP optimal return water temperature  

A Backpropagation (BP) neural network architecture was developed to predict heating 

load dynamics in cold-region public buildings through multivariate outdoor parameter analysis 

(ambient temperature, solar irradiance, wind speed). This predictive framework was 

subsequently integrated with an ASHP optimization model that determines ideal return water 

temperature setpoints through iterative computation of predicted thermal loads (Q pred), real-

time outdoor conditions (T out), and indoor temperature setpoints (T set). The operational control 

logic implemented proportional–integral–derivative (PID) adjustments based on the differential 

between actual and predicted return water temperatures (ΔT return=Tactual−T predicted), achieving 

87% setpoint convergence within 15-minute intervals. As demonstrated in Fig. 7. 

 

Fig.7 Thermal load forecasting model based on an Artificial neural network model 

 

Assuming the heat load as the set value of the PID controller, and the PID control of the 

fan coil water supply temperature was carried out through the difference value between the 

actual heat supply and set value, and this allowed the fan coil water supply temperature to match 

the indoor heat load demand, and since the ideal return water temperature setting of the ASHP 

must ensure thermal comfort, the PMV value was again set as the upper limit of indoor comfort 

range (-1) under winter conditions. PID control was then carried out on the outlet water 

temperature of the fan coil at this time by setting the difference value between PMV and actual 

PMV. The fan coil’s ideal outlet temperature was the best return temperature of the ASHP, and 

it also satisfied the upper limit of the indoor comfort range. 

3. Simulation results 

3.1. Simulation calculation of optimal return water temperature setting value 

Employing the fan coil control methodology integrated with TRNSYS, a comprehensive 

simulation was conducted throughout the entire heating period. The lower limit of the water 

supply temperature was constrained to 25 ℃. In the event that the water temperature computed 

via PID fell below the lower limit of the predefined water temperature range, the water 

temperature was set to 20 °C. Conversely, if the calculated demanded water temperature 

surpassed the upper limit of the set temperature range, the water temperature was adjusted to 

50 ℃. The indoor PMV was maintained as -1, and the simulation step was set at 10 minutes. 
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The optimal return water temperature set value derived from the simulation calculation was 

presented in Fig. 8. 

 

Fig.8 Calculation results of optimal return water temperature during the heating period 

 

The heating cycle was strategically divided into three distinct phases to characterize 

system dynamics during both transient and steady-state operations. During the initial heating 

stage, when the building's thermal load remained relatively low, the optimized return water 

temperature stabilized at approximately 30 °C, with setpoint values predominantly below 40 °C. 

As the system progressed into mid- and late-stage heating periods, decreasing ambient 

temperatures correlated with increased building thermal demands, driving higher fan coil water 

temperature requirements. Return water temperatures peaked at 43 °C for sustained 1- 2 hour 

intervals before a gradual decline, maintaining optimal operational ranges between 25 °C and 

40 °C. During terminal heating phases, rising external temperatures prompted systematic 

reduction of return water setpoints, demonstrating the system's adaptive response to seasonal 

thermal load variations. 

3.2. Verification of thermal comfort and energy consumption 

The determined optimal return water temperature profile was implemented in the 

established ASHP model while preserving the original control scheme, with the resulting 

simulation outputs demonstrating PMV distributions across critical heating phases (initial, mid-

term, and terminal periods) as illustrated in Fig. 9. 
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Fig.9 Simulation results of PMV during the heating period after optimization 

 

Since the unit start of public buildings was 8 a.m. in the morning, and the indoor PMV 

at this time was below -1.5, with the unit start, the room warmed up, and the PMV reached -

1~0 about 1h later. 

Initial heating stage, due to the smaller indoor thermal demand, the unit was running in 

a low working mode, and the indoor PMV was maintained above -1 for 1/3 of the time 

throughout the day. Even if the unit has just started, the room could achieve a satisfactory 

comfort level. 

Middle heating period, the room thermal load was large, and the unit ran in high working 

mode, and when the indoor temperature was stable, PMV was smoothly distributed in a range 

greater than -1. In the later period, the PMV of the whole day was below -1 due to most extreme 

weather situation in Changchun, at this time, and the ambient temperature reached -28 ℃, and 

the extremely low outdoor temperature resulted in the evaporation temperature of the unit 

becoming low, which led to the weakening of the heating capacity and affected the indoor 

comfort. 

At the end of the heating period, the outdoor temperature began to rise, and the indoor 

PMV began to show the same distribution as the initial period of heating, and the PMV was 

greater than -1. Compared with the initial period of heating, the PMV was slightly lower, but it 

could also meet the indoor comfort requirements. 

Fig. 10 presents the energy consumption comparison between conventional and 

optimized control modes, evaluated through unit heating area energy intensity metrics. The 

analysis encompassed three critical subsystems: compressor units, air handling fans, and 

circulation pumps. Post-optimization results revealed nuanced energy dynamics: while the 

reduced heating capacity of fan coils extended operational durations, increasing fan energy 

consumption by 13.0% (1.83 vs. 1.62 kWh/m2), this tradeoff enabled substantial unit-side 

efficiency gains. The optimized configuration achieved 34.34 kWh/m2 in compressor energy 

use, representing an 8.6% reduction from baseline operations. 
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Fig.10 Analysis of simulation results of optimal control and traditional control 

 

3.3. Effect analysis of the ASHP optimization control method 

The optimized ASHP system was rigorously evaluated through heating season 

simulations in Changchun, China. Two representative meteorological days (January 23 and 

March 10) were selected to assess system performance under contrasting climate regimes, as 

benchmarked in Fig. 11. 

January 23 exhibited extreme cold conditions with sustained temperatures (-25 °C to -

21 °C, mean -23 °C), moderate relative humidity (28~50%), and consistent wind speeds (5~14 

m/s). Conversely, March 10 demonstrated transitional spring operation characterized by 

thermal inversion events (-6 °C to 2 °C, mean -2.7 °C), variable humidity (23~71%), and 

significant diurnal wind speed variations (3~35 m/s). This dual-phase analysis captures critical 

operational challenges spanning peak winter loads and partial-load spring conditions in cold 

continental climates. 

 
Fig.11 Comparative analysis of parameters on the most typical meteorological days 

 

Operational Performance Under Contrasting Thermal Loads: The optimized control 

strategy demonstrated distinct operational characteristics across varying load conditions, as 

evidenced by comparative analyses of two representative operational modes. 

Figure 12 shows the comparison between optimal control and traditional control. On 
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March 10th, in low operating mode, from 8:00 am to 8:25 am, the air conditioning unit was just 

started, and the indoor temperature slowly increased. Low-Load Operation (March 10): During 

transitional spring conditions (Fig. a), the enhanced control system maintained return water 

temperatures between 19.3 °C and 43.3°C, effectively eliminating compressor cycling while 

sustaining indoor temperatures at 17.9~18.7 °C. This contrasted with the conventional control's 

fixed 40°C setpoint that induced frequent unit cycling. Post-morning optimization yielded 

progressive temperature setpoint reductions aligned with decreasing thermal loads, achieving 

stable relative humidity (44~55%) and thermal comfort parameters (PMV: -0.88 to -0.44). The 

operational refinement reduced daily energy consumption from 287 kWh (baseline) to 262 kWh, 

representing 8.7% system-wide efficiency gains. 

Peak-Load Operation (January 23): Under extreme winter conditions (Fig. b), both 

control modes maintained indoor temperatures within 17.6~18.6 °C during morning startup 

(08:00~08:30 a.m.). The optimized system's dynamic return water temperature regulation (peak 

42°C at 08:30) outperformed conventional methods through enhanced humidity control 

(38~44%) and improved thermal comfort stability (PMV: -1.02 to -0.88). Energy consumption 

analysis revealed 3.6% system efficiency improvements (710.5 kWh vs. 737.3 kWh), 

demonstrating effective load management during maximum heating demand periods. Fig. 12 

details comparative performance metrics across control strategies, highlighting optimized 

operation's capacity to balance thermal stability with energy efficiency under extreme climatic 

stress. 
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(a) Low-Load Operation 
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(b) Peak-Load Operation 

Fig.12 Comparative analysis of optimal control and traditional control 

 

The above text is the simulation calculation of typical dates during the heating period, 

and the operation simulation of high and low working conditions has been carried out. 
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Considering that the optimization results of predicting typical dates with the artificial neural 

network model are insufficient to verify the model, the optimization simulation was conducted 

for the entire heating period (169 days) from October 20th to April 6th of the following year in 

Changchun. Figure 13 illustrates optimized control versus conventional control over the entire 

heating period. 

 

Fig.13 Comparative analysis of optimal control and traditional control 

 

3.4. Evaluation of optimal control methods for air source heat pump 

The conventional control methodology for the ASHP system, implemented through 

TRNSYS simulation, employed fixed return water temperature setpoints (40 °C) for operational 

regulation. In contrast, the optimized predictive control strategy dynamically adjusted setpoints 

in response to real-time meteorological parameters, enabling adaptive temperature modulation 

and energy-efficient operation. 

3.4.1 Indoor environmental assessment 

An optimal control methodology was implemented in ASHP heating systems across three 

northeastern Chinese cities (Shenyang, Changchun, and Harbin) during the heating season. The 
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resulting indoor environment distribution patterns are systematically illustrated in Fig. 14. 
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Fig.141 Distribution of meteorological parameters in three regions 

 

The fan coil unit's operational cycling was regulated through preset indoor temperature 

thresholds. Across three consecutive heating seasons, mean interior temperatures were 

maintained at 18.0 ℃, 18.1 ℃, and 18.3 ℃, respectively. Operational data revealed that 80% 

of recorded temperatures fell within the 17.9~19.0 ℃ range (ΔT=1.1 ℃), demonstrating stable 

thermal regulation. Transient temperature deviations below this range primarily occurred 

during system initialization phases in public buildings, coinciding with temporarily reduced 

PMV indices during warm-up operations. 

The three cities maintained an average indoor relative humidity of 42%. A PID control 

strategy optimized the return water temperature setpoint to align the PMV between the target 

range of -1.0 and measured indoor values, yielding a regional average PMV of approximately 

-0.7. During periods of adverse outdoor conditions, while heating efficiency decreased 

significantly, the system maintained PMV levels above -1.4. 

3.4.2 Energy-saving effect evaluation 

The ASHP heating systems in Shenyang, Changchun, and Harbin were optimized, and 

the COP of the units after optimized control was distributed as Fig. 15: 
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Fig.25 The COP value distribution of the unit under optimal control 

 

Liu Xin et al[25] conducted long-term monitoring of the air source heat pump heating 

season in an office building in a cold region. They analyzed the actual operating characteristics 

and system performance of the heat pump, and found that using traditional control methods, the 

average supply and return water temperatures of the heat pump were 32.98℃ and 30.26℃, the 

room temperature guarantee rate was 84%, and after correction with the contribution rate 

correction coefficient, it became 75%. The COP of the heat pump unit was 1.55. From the above 

figure, it can be seen that in Shenyang, Changchun, and Harbin regions, the mean COP of the 

air source heat pump system during optimized control operation was all greater than 2. he 

optimized control method demonstrated superior COP across all three cities during the heating 

season compared to traditional control strategies. Specifically, the Shenyang unit achieved COP 

improvements of 7.91~27.27% (average: 16.61%), while the Changchun and Harbin units 

showed enhancements of 11.56~31.97% (average: 21.93%) and 8.42~29.48% (average: 

19.81%), respectively. This control method has strong reference significance in cold regions. 

Implementation of the optimized control in ASHP systems across Shenyang, Changchun, 

and Harbin revealed distinct energy consumption patterns for fan coil units, as illustrated in Fig. 

16. The elevated return water temperature setpoint under optimized control prolonged system 

operation periods, leading to increased fan coil energy consumption despite maintaining 

equivalent heat transfer rates. This trade-off between COP gains and ancillary energy demand 

highlights the nuanced balance required in thermal system optimization. 

 

Fig.16 Energy consumption analysis of units under different control modes 

 

Implementation of the optimized control strategy in ASHP heating systems across 

Shenyang, Changchun, and Harbin during the heating season revealed distinct energy 
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consumption patterns, as illustrated in Fig. 17. During peak operational periods with severe 

outdoor conditions, the systems operated at high-load modes, yielding modest energy savings 

averaging 3.5%. However, significant energy efficiency gains (15.9~17.4% mean savings) were 

achieved across all three regions, with maximum savings occurring during initial and terminal 

heating phases. 

 

Fig.17 The energy saving rate of the system in different periods 

 

The optimized control strategy was implemented in ASHP heating systems across three 

northeastern Chinese cities—Shenyang, Changchun, and Harbin—during the heating season. 

Fig. 18 illustrates the system’s energy consumption per unit area under optimized control 

throughout the entire heating period. While the fan coil unit exhibited increased energy 

consumption per unit area under optimal control, the system-wide optimized configuration 

achieved significant reductions in specific energy consumption compared to conventional 

control methods. 

Implementation of optimized return water temperature control in Shenyang's ASHP 

system yielded specific energy consumption of 27.36 kWh/ m2, representing a 9.31% reduction 

compared to conventional control strategies. System-wide optimization further decreased 

specific energy consumption to 32.54 kWh/m2 (7.37% improvement over traditional methods), 

as detailed in Fig. 18. Cumulatively, this optimized configuration achieved annual electricity 

savings of 4,449.62 kWh during the heating season. 

Implementation of optimized return water temperature control in Changchun's ASHP 

system achieved specific energy consumption of 34.34 kWh/m² (8.60% reduction vs. 

conventional control). System-wide optimization further decreased specific consumption to 

40.15 kWh/m² (6.99% improvement over baseline methods), with cumulative seasonal 

electricity savings reaching 5,188.36 kWh. 

Implementation of optimized return water temperature control in Harbin's ASHP system 

resulted in a specific energy consumption of 42.32 kWh/m² (5.15% reduction vs. conventional 

methods). System-wide optimization further reduced specific consumption to 47.58 kWh/m² 

(6.15% improvement over baseline operations), achieving cumulative seasonal electricity 

savings of 5,360.16 kWh. 
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Fig.18 Energy consumption of different cities during the heating period 

 

4. Discussion 

This study establishes a TRNSYS-based simulation framework for air-source heat pump 

(ASHP) heating systems, employing an optimization algorithm. The feasibility of the optimal 

dynamic return water temperature setting value was verified. It was concluded that the energy 

consumption of the fan increased by 13.0% compared with the traditional control method, while 

the energy consumption of the unit was reduced by 8.60% compared with the traditional control 

method. The unit area system energy consumption after optimization control was reduced by 

6.99% compared with the traditional control method. An artificial neural network model was 

used to predict the optimal dynamic return water temperature setting value of the low-

temperature air source heat pump system, and the prediction error was less than 10%.. Case 

study analyses revealed that while fan coil energy consumption increased under optimized 

control, the system achieved net energy savings through reduced unit-level consumption. 

Specifically, optimized configurations demonstrated: 9.31% (Shenyang), 8.60% (Changchun), 

and 5.15% (Harbin) reductions in specific energy consumption (kWh/m²) for return water 

temperature control; 7.37% (Shenyang), 6.99% (Changchun), and 6.15% (Harbin) decreases in 

total specific energy consumption compared to conventional operation. 

Seasonal simulations across three northeastern Chinese cities validated the proposed 

control strategy’s efficacy, demonstrating its capacity to maintain PMV indices within 

acceptable ranges (-1.4 to +0.5) while achieving cumulative energy savings of 4,449~5,360 

kWh per system. These findings provide actionable insights for optimizing ASHP operations in 

cold climates, particularly regarding the trade-off between localized component consumption 

and holistic system efficiency. The optimization control method established in this paper 

exhibits different performance due to the variations in public buildings and the different power 

capacities of the selected system units. Therefore, the adaptability of the optimization control 

strategy still requires further research. 
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