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The laminar natural convection of non-Newtonian Carreau fluids in a trape-
zoidal cavity with a local heat source at the bottom is numerically investigated. A
stabilized streamline–upwind/Petrov–Galerkin (SUPG) finite element algorithm is
proposed, in which equal low-order finite elements are used. Effects of Rayleigh
number (i.e., Ra = 104 and 105), power-law index (i.e., 0.6 ≤ n ≤ 1.4), Prandtl
number (i.e., 0 .1 ≤ Pr ≤ 100 ), and local heat source length (i.e., 0.1 ≤ η ≤ 1.0)
are researched. Results show that for different power-law indexes, as Prandtl num-
bers increase, the convective heat transfer is enhanced ; as power-law indexes in-
crease, influences of Prandtl numbers decrease, as local heat source length in-
crease, the convective heat transfer is enhanced.
Keywords : Stabilized finite element ; Carreau fluids ; Natural convection ; Trape-
zoidal cavity ; Local heat source

1 Introduction

Natural convection in cavities with complex geometric shapes is widely used in cooling of electronic
equipment, solar collectors, cooling of nuclear reactors, etc., see [1] for futher details. In the past, a large
number of studies focused on this type of natural convection for Newtonian fluids [2, 3]. In most of the above
industrial applications, the flow usually exhibits a certain non-Newtonian viscosity [4, 5]. Therefore, natural
convection of non-Newtonian fluids in trapezoidal cavities with local heat sources is a very interesting topic.

Generalized Newtonian fluids with shear rate dependence are an important part of rheology, and a large
number of constitutive models have been developed, including the power-law model, the Carreau model, etc.,
see [6] for futher details. In recent studies, the effect of non-Newtonian viscosity on natural convection has
been noted [7, 8]. The influence of parameters of Carreau–Yasuda constitutive equation on natural convection
in a rectangular cavity is discussed in [9]. In [10], the laminar natural convection of power-law fluids in 2D
trapezoidal enclosure with a heated bottom wall is analyzed.

A large amount of work has shown that numerical simulation has become an important tool for natu-
ral convection problems, including finite difference method [8, 9, 11, 12], finite volume method [10], finite
element method [13] and lattice Boltzmann method [7]. The solution of natural convection problems by fi-
nite element method requires a stabilization method to avoid spurious oscillations caused by the nonlinear
convection term. Many stabilized formulas based on the finite element method have been developed, such
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as SUPG [14], Galerkin/least–squares (GLS) [15], and other methods [16]. It is worth mentioning that al-
though various methods have been proposed to solve non-Newtonian problems [17], there is still a need for
numerical methods that can achieve equal low-order finite elements [18− 20]. This paper adopts a stabilized
algorithm to study the natural convection of Carreau fluids in a trapezoidal cavity with a local heat source.
By using the penalty function method to solve the velocity-pressure coupling term and the SUPG formula-
tion to solve the momentum equation and energy equation containing nonlinear convection terms, and the
numerical stability of the equal low-order elements can be guaranteed.

The rest of this paper is organized as follows. In Section 2, the mathematical model for natural convec-
tion of Carreau fluids in an isosceles trapezoidal cavity with a local heat source is proposed. In Section 3, a
stabilized SUPG algorithm based on a penalty function is proposed. In Section 4, effects of Prandtl numbers
and local heat source lengths on the natural convection of Carreau fluids are analyzed.

2 Governing equations

2.1 Problem description and governing equations

The model is shown in Fig. 1. The length and height of the lower base of the isosceles trapezoidal cavity
are both L, and the left and right walls maintain a constant angle φ = π/6 with the vertical direction. The left
and right inclined walls of the cavity maintain a constant low temperature Tc, and the bottom wall has a heat
source with a length of 0 < Lh ≤ L and a constant high temperature Th, and the rest of the wall is insulated.
The cavity is filled with Carreau fluids. The natural convection satisfies : (1) The flow is incompressible and
laminar, and meets the no-slip boundary condition ; (2) The flow is in local thermal equilibrium with no heat
generation, no thermal radiation, no viscous dissipation and no chemical reaction ; (3) The density variation
with temperature is described by the Boussinesq approximation : ρ̄ = ρ0[1 − β(T̄ − Tc)], where β is the
thermal expansion coefficients, ρ is the density, ρ0 is the initial density and T̄ is the temperature.
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Fig. 1. Geometry of the present study.

The governing equations for natural convection of Carreau fluids are as follows [7] :

∇ · v̄ = 0, (1)

ρ0v̄ · ∇v̄ = −∇p̄+∇ · τ̄ + ρ̄g, (2)

τ̄ = 2µ̄ε̄, ε̄ =
1

2
(∇v̄ +∇v̄T ),

µ̄− µ∞
µ0 − µ∞

=
[
1 + (λI2)

2
]n−1

2 , I2 =
√
2ε̄ : ε̄, (3)

v̄ · ∇T̄ = α∇2T̄ , (4)
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where v̄ = (ū, v̄) is the velocity field, p̄ is the pressure, g is the mass force, α is the thermal diffusion
coefficient, τ̄ is the viscous stress tensor, ε̄ is the deformation rate tensor, µ̄ is the viscosity, µ0 and µ∞
are the viscosities corresponding to zero- and infinite-shear-rate viscosities, λ is a time constant, n is the
power-law index, and I2 is the shear rate or the equivalent strain rate.

The boundary Γ̄ = ∂Ω̄ is the boundary of the flow area Ω̄, which consists of four disjoint subsets :

Γ̄1 = {(x̄, ȳ) : −Lh

2
≤ x̄ ≤ Lh

2
, ȳ = 0}, Γ̄2 = {(x̄, ȳ) : −L

2
− L tanφ ≤ x̄ ≤ L

2
+ L tanφ, ȳ = L},

Γ̄3 = {(x̄, ȳ) : Lh

2
≤ x̄ ≤ L

2
, ȳ = 0} ∪ {(x̄, ȳ) : −L

2
≤ x̄ ≤ −Lh

2
, ȳ = 0},

Γ̄4 = {(x̄, ȳ) : L
2
≤ x̄ ≤ L

2
+ L tanφ, ȳ =

x̄− L
2

tanφ
} ∪ {(x̄, ȳ) : −L

2
− L tanφ ≤ x̄ ≤ −L

2
, ȳ =

x̄+ L
2

tanφ
}.

The boundary conditions of the problem are as follows :

v̄|Γ̄1
= 0, T̄ |Γ̄1

= Th, v̄|Γ̄2∪Γ̄3
= 0,

∂T̄

∂n
|Γ̄2∪Γ̄3

= 0, v̄|Γ̄4
= 0, T̄ |Γ̄4

= Tc.

2.2 Non-dimensional equations

The non-dimensional variables are introduced for equations (1)− (4), as follows :

(x, y) =
(x̄, ȳ)

L
, v = (u, v) =

(ū, v̄)L

α
, p =

L2p̄

ρ0α2
, T =

T̄ − Tc
Th − Tc

, µ =
µ̄

µ0
. (5)

By substituting equation (5) into equations (1)− (4), the non-dimensional equations are obtained :

∇ · v = 0, (6)

v · ∇v = −∇p+ Pr∇ · τ +RaPrδi,2T, (7)

τ = 2µε, ε =
1

2
(∇v +∇vT ), µ = s+ (1− s)[1 + (Cu

√
2ε : ε)2]

n−1
2 , (8)

v · ∇T = ∇2T, (9)

where s =
µ∞
µ0

is the ratio of infinite shear rate to zero shear rate viscosity, Cu =
λα

L2
is Carreau number,

Ra =
ρ0gL

3β(Th − Tc)

µ0α
is Rayleigh number, Pr =

µ0
ρ0α

is Prandtl number. Here s = 10−4.

Γ = ∂Ω is the boundary of the non-dimensional area Ω, and 0 ≤ η = Lh
L ≤ 1 is the non-dimensional

local heat source length :

Γ1 = {(x, y) : −η
2
≤ x ≤ η

2
, y = 0}, Γ2 = {(x, y) : −1

2
− tanφ ≤ x ≤ 1

2
+ tanφ, y = 1},

Γ3 = {(x, y) : η
2
≤ x ≤ 1

2
, y = 0} ∪ {(x, y) : −1

2
≤ x ≤ −η

2
, y = 0},

Γ4 = {(x, y) : 1
2
≤ x ≤ 1

2
+ tanφ, y =

x− 1
2

tanφ
} ∪ {(x, y) : −1

2
− tanφ ≤ x ≤ −1

2
, y =

x+ 1
2

tanφ
}.

The non-dimensional expression of the boundary conditions is as follows :

v|Γ1 = 0, T |Γ1 = 1, v|Γ2∪Γ3 = 0,
∂T

∂n
|Γ2∪Γ3 = 0, v|Γ4 = 0, T |Γ4 = 0.
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The local Nusselt number Nu(x) and average Nusselt number Nu0 on the hot wall are defined as :

Nu(x) = −∂T
∂n

and Nu0 =
1

η

∫ η
2

− η
2

Nu(x)dx, where n is the normal direction on the wall. The average

viscosity is introduced in this work to describe non-Newtonian behavior : µavg =

∫
Ω
µ(x, y)dΩ, where Ω is

the region of the considered trapezoidal cavity.

3 Numerical methods

In this section, a SUPG stabilized algorithm based on a penalty function is proposed to solve the system
(6)− (9), which can use equal low-order elements of velocity, pressure and temperature.

3.1 SUPG finite element formulation based on penalty function

The penalty factor γ is introduced into equation (6), so that following equation holds true [20, 21] :

p = −γ(∇ · v), (10)

where the γ value is large enough and in this work γ = 107.
The finite-dimensional solution and test function spaces are defined as follows [18, 22] :

Sh
v =

{
vh : vh ∈

[
Hh

1(Ω)
]nsd

,vh = vD on ΓD
}
,Sh

T =
{
T h : T h ∈

[
Hh

1(Ω)
]
, T h = TD on ΓD

}
,

Vh
v =

{
wh : wh ∈

[
Hh

1(Ω)
]nsd

,wh = 0 on ΓD
}
,Vh

T =
{
T h : T h ∈

[
Hh

1(Ω)
]
, T h = 0 on ΓD

}
,

where vD and TD are the Dirichlet-type boundary conditions associated with the velocity v and the temper-
ature T , and nsd represents the spatial dimension (nsd = 2 in this paper).

By introducing the SUPG stabilization term and equation (10), the stabilization formula of system
(6) − (9) can be obtained (for all wh ∈ Vh

v and wh ∈ Vh
T , find vh ∈ Sh

v and T h ∈ Sh
T so that the

following equation holds) as follows [18, 22] :∫
Ω
wh(vh · ∇vh −RaPrfh)dΩ+ Pr

∫
Ω
µh(∇wh) · (∇vh)dΩ+ γ

∫
Ω
(∇ ·wh)(∇ · vh)dΩ

+

∫
Ω
wh(vh · ∇T h)dΩ+

∫
Ω
(∇wh) · (∇T h)dΩ−

∫
Γh

whhhdΓ−
∫
(Γh)T

whhhdΓ

+

nele∑
e=1

∫
Ωe

(γsupgv
h · ∇wh) · rhvdΩ+

nele∑
e=1

∫
Ωe

(γsupgv
h · ∇wh) · rhTdΩ = 0,

(11)

where the discrete functions with superscript ′h′ represent from the finite-dimensional space. hh and hh rep-
resent the Neumann boundary conditions of velocity and temperature, Γh and (Γh)T are the corresponding
Neumann boundaries. nele is the number of elements, and e is the element counter. The residual vectors rhv
and rhT associated with the momentum equation and energy equation are defined as :

rhv = vh · ∇vh − Pr∇ · [µh(∇v +∇vT )]− γ∇(∇ · vh)−RaPrfh

rhT = vh · ∇T h −∇ · (∇T h).
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The stabilization parameter γsupg is defined as [20, 23] :

γsupg =
he

2∥ve∥
1√

1 + 6ν/(∥ve∥he)
,

where he =
√
Ae is the characteristic element size, Ae is the element area in two dimensions, ve is the

convection velocity in the element center of mass, the average of velocities at each node in the element, and
∥ · ∥ is the standard Euclidean norm, and ν is the kinematic viscosity.

3.2 Code validation and grid independence

The linear equal low-order elements of velocity-pressure-temperature are used in this work. The bench-
mark solution of the natural convection for the Newtonian fluid (n = 1.0) in a square cavity is solved to
verify the accuracy and effectiveness of the numerical method, and the results are listed in Tab. 1.

Table 1. Comparison of benchmark solutions by different numerical methods for the Newtonian fluid in a
square cavity at Pr = 0.71 when Ra = 104 and 105

Ra Mesh |ψmid| |ψ|max umax vmax Nu0 Numax Numin

Present (100× 100) 5.0732 5.0732 16.1970 19.6466 2.2405 3.5751 0.5851
104 Ref.[24] (129× 129) 5.0741 5.0741 16.1817 19.6284 2.2449 3.5313 0.5850

Ref.[25] (81× 81) 5.0738 5.0738 16.1837 19.6282 2.2441 3.5295 0.5847

Present (100× 100) 9.1097 9.6294 34.7889 68.5969 4.5051 7.6614 0.7285
105 Ref.[24] (129× 129) 9.1194 9.6202 34.7363 68.5385 4.5214 7.7216 0.7280

Ref.[25] (81× 81) 9.1161 9.6173 34.7417 68.6383 4.5195 7.7121 0.7275

The variables listed here are : the absolute value of streamfunction |ψmid| at the midpoint of the cavity,
the maximum absolute value of streamfunction |ψ|max, the maximum horizontal velocity umax on the vertical
midplane, the maximum vertical velocity vmax on the horizontal midplane, the average Nusselt number Nu0
on the hot wall, and the maximum and minimum values Numax and Numin of the local Nusselt number on
the hot wall. Tab. 1 shows that the benchmark solution obtained by the proposed numerical method is highly
consistent with the results of the high-precision compact methods in [24] and [25].

Table 2. Grid independence study of the shear-thinning fluid (n = 0.6, Cu = 2) in the trapezoidal
cavity(η = 0.5) at Pr = 10 when Ra = 104 and 105

Ra = 104 Ra = 105

Mesh µavg |ψ|max vmax Nu0 µavg |ψ|max vmax Nu0
(80× 80) 0.7200 6.2562 33.9790 3.0311 0.6935 21.9424 170.0062 5.7385
(92× 92) 0.7204 6.2554 34.0219 3.0650 0.6944 21.9771 170.8303 5.8146
(100× 100) 0.7206 6.2599 34.0421 3.0836 0.6949 21.9942 171.2502 5.8558
(112× 112) 0.7209 6.2589 34.0651 3.1073 0.6954 22.0084 171.7464 5.9070

Next, natural convection of shear-thinning fluid (n = 0.6, Cu = 2) is performed in a trapezoidal cavity
with a local heat source. The numerical results are shown in Tab. 2, and the difference between the numerical
results of grid 100× 100 and the results of grids with higher density is less than 0.5%.
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4 Results and discussion

The results in [7 − 9, 12] show that in natural convection of generalized Newtonian fluids at different
Rayleigh numbers, the flow and heat transfer are weakened with increasing power-law index. Here, natural
convection of Carreau fluids in a trapezoidal cavity with a local heat source at the bottom is focused on.

4.1 Effects of Prandtl numbers on flow and heat transfer

In this subsection, the effects of Prandtl numbers on the natural convection of Carreau fluids in an
isosceles trapezoidal cavity with a local heat source of η = 0.5 at the bottom is investigated.

Fig. 2 illustrates the streamlines for different power-law indexes n and Prandtl numbers Pr atRa = 105.
Fig. 2 shows that streamlines is basically symmetrical about the central axis of the cavity, and for different
n, the value of streamlines increases significantly with the increase of Pr. For a fixed Pr, the value of
streamlines decreases with the increase of n. With the increase of Pr, the streamlines value at the vortex
core gradually increases from 13 to 22 for n = 0.6 ; from 11 to 15 for n = 1.0 ; and from 10 to 12 for
n = 1.4. It shows that the influence of Pr on streamlines weakens with the increase of n.
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Fig. 2. Streamlines of Carreau fluids natural convection with different Prandtl numbers Pr and power-law
indexes n in a trapezoidal cavity with a heat source of η = 0.5 at Ra = 105 : from top to bottom n = 0.6,
1.0, 1.4 and from left to right : Pr = 0.1, 1.0, 10, 100.

Fig. 3 shows the isotherms for different power-law indexes n and Prandtl numbers Pr atRa = 105. Fig.
3 shows that isotherms is basically symmetrical about the central axis of the cavity, and for different n, the
temperature gradient at the local heat source increases with the increase of Pr, which is particularly obvious
for n = 0.6. For a fixed Pr, the temperature gradient at the local heat source decreases with the increase of
n. It is clearly observed that at n = 0.6, the distribution of isotherms in the cavity shows obvious differences
with the increase of Pr, especially for isotherms with values of 0.3 and 0.4, but when n = 1.0 and n = 1.4,
the difference in isotherms at different Pr weakens. It shows that at Ra = 105, with the increase of n, the
influence of Pr on isotherms weakens.

Furthermore, local Nusselt number Nu(x) on the local heat source and velocity v(x) in the middle of
the cavity for different power-law indexes n and Prandtl numbers Pr are indicated in Fig. 4. Fig. 4 shows
that for different n, Nu(x) and v(x) increase with the increase of Pr. Fig. 4 shows that at Pr = 10, the
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Fig. 3. Isotherms of Carreau fluids natural convection with different Prandtl numbers Pr and power-law
indexes n in a trapezoidal cavity with a heat source of η = 0.5 at Ra = 105 : from top to bottom n = 0.6,
1.0, 1.4 and from left to right : Pr = 0.1, 1.0, 10, 100.

influence of n on the Nu(x) and the v(x) velocity in the middle of the cavity is significantly stronger than
that at Pr = 0.1 and Pr = 0.71. Fig. 4 shows that the influence of n increase with the increase of Pr.

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x

0

5

10

15

20

25

Nu
(x

) a
t R

a=
10

4

Pr=0.1,n=0.6
Pr=0.71,n=0.6
Pr=10,n=0.6

Pr=0.1,n=1
Pr=0.71,n=1
Pr=10,n=1

Pr=0.1,n=1.4
Pr=0.71,n=1.4
Pr=10,n=1.4

-0.25 -0.245 -0.24

15

17.5

20

0.24 0.245 0.25

15

17.5

20

-0.02 0 0.02

2.1

2.2

2.3

2.4

2.5

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x

0

5

10

15

20

25

30

35

40

Nu
(x

) a
t R

a=
10

5

Pr=0.1,n=0.6
Pr=0.71,n=0.6
Pr=10,n=0.6

Pr=0.1,n=1
Pr=0.71,n=1
Pr=10,n=1

Pr=0.1,n=1.4
Pr=0.71,n=1.4
Pr=10,n=1.4

-0.02 0 0.02

2.5

3

3.5

4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

-30

-20

-10

0

10

20

30

40

v 
at

 R
a=

10
4

Pr=0.1,n=0.6
Pr=0.71,n=0.6
Pr=10,n=0.6
Pr=0.1,n=1
Pr=0.71,n=1
Pr=10,n=1
Pr=0.1,n=1.4
Pr=0.71,n=1.4
Pr=10,n=1.4

-0.22 -0.2 -0.18 -0.16

-2

0

2

4

6

8

0.16 0.18 0.2 0.22

-2

0

2

4

6

8

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
x

-100

-50

0

50

100

150

200

v 
at

 R
a=

10
5

Pr=0.1,n=0.6
Pr=0.71,n=0.6
Pr=10,n=0.6
Pr=0.1,n=1
Pr=0.71,n=1
Pr=10,n=1
Pr=0.1,n=1.4
Pr=0.71,n=1.4
Pr=10,n=1.4-0.16 -0.14 -0.12 -0.1

10

20

30

40

50

0.1 0.12 0.14 0.16
10

20

30

40

50

Fig. 4. Comparisons of local Nusselt number Nu(x) on the local heat source and v velocity distributions at
y = 0.5 for different Prandtl numbers Pr and power-law indexes n at Ra = 104(left) and 105 (right).

Fig. 5 indicates the variation of average viscosities µavg, average Nusselt numbers Nu0 and the max-
imum absolute value of streamfunctions |ψ|max with different Prandtl numbers Pr for different power-law
indexes nwhenRa = 104 and 105, respectively. Obviously, influences of n and Pr are significantly stronger
when Ra = 105 than when Ra = 104. As shown in Fig. 5, for different n, as Pr increase, Nu0 gradually
increases, and |ψ|max first increase and then tend to be flat. Fig. 5 shows that the effect of Pr weaken with the
increase of n. Tab. 3 gives the quantitative results of numerical simulation. Tab. 3 shows that for different n,
as Pr increase, Nu0 and |ψ|max show large differences. For example, when Ra = 105, growth rates of Nu0
for n = 0.6 is 45.94%, 3.56%, 19.24%, and 7.24%, for n = 1.0 is 28.98%, 2.82%, 12.45%, and 1.98%, and
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Fig. 5. The effect of Prandtl numbers Pr on the average viscosity µavg, the average Nusselt number
Nu0 on the hot wall and the maximum streamfunction |ψ|max for different power-law indexes n in a
trapezoidal cavity with a heat source of η = 0.5 at Ra = 104 (top) and Ra = 105 (bottom).

for n = 1.4 is 22.57%, 2.19%, 6.95%, and 0.77%. Interestingly, when Ra = 105, growth rates of |ψ|max for
n = 0.6 is 32.19%, 3.33%, 19.45%, and 2.61%, for n = 1.0 is 26.50%, 2.84%, 5.66%, and −0.32%, for
n = 1.4 is 22.03%, 1.50%, 0.10%, and −0.35%. Tab. 3 shows that the influence of Pr decreases with the
increase of n.

Table 3. Comparisons of numerical results for different Rayleigh numbers, power-law indexes and Prandtl
numbers in a trapezoidal cavity with a heat source length of η = 0.5.

Ra = 104 Ra = 105

Pr 0.1 0.71 1 10 100 0.1 0.71 1 10 100

µavg 0.8107 0.7453 0.7379 0.7206 0.7195 0.8139 0.7284 0.7204 0.6949 0.6824
n = 0.6 Nu0 2.1941 2.6712 2.7572 3.0836 3.1217 3.2494 4.7421 4.9110 5.8558 6.2800

|ψ|max 4.7643 5.9033 6.0328 6.2599 6.2617 13.4800 17.8188 18.4127 21.9942 22.5680

µavg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
n = 1.0 Nu0 2.0861 2.3983 2.4356 2.5169 2.5235 3.2006 4.1282 4.2446 4.7732 4.8676

|ψ|max 3.9528 4.5374 4.5556 4.5404 4.5349 11.6873 14.7846 15.2042 16.0648 16.0141

µavg 1.1933 1.2394 1.2414 1.2441 1.2443 1.2219 1.3048 1.3122 1.3292 1.3308
n = 1.4 Nu0 2.0176 2.2170 2.2311 2.2573 2.2592 3.0859 3.7825 3.8655 4.1342 4.1660

|ψ|max 3.4548 3.7442 3.7405 3.7173 3.7145 10.5243 12.8427 13.0350 13.0482 13.0021

4.2 Effects of local heat source lengths on flow and heat transfer

In this subsection, the effect of the local heat source length η on the bottom edge of the trapezoidal
cavity on the natural convection is further considered.

Fig. 6 exhibits streamlines with different local heat source lengths η and power-law indexes n when
Ra = 105 and Pr = 10. Fig. 6 shows that streamlines are basically symmetrical about the central axis of
the cavity, and for different n, the streamlines value increases significantly with the increase of η. For a fixed
η, the streamlines value decreases with the increase of n. Interestingly, as η increases from 0.3 to 1.0, the
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streamlines value at the vortex core gradually increases from 18 to 25 for n = 0.6 ; from 13 to 18 for n = 1.0

and from 11 to 14 for n = 1.4. This shows that as n increases, the effect of η on the streamlines decreases.
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Fig. 6. Streamlines of Carreau fluids natural convection for different power-law indexes n in a trapezoidal
cavity with different heat source lengths η at Ra = 105 and Pr = 10 : from top to bottom n = 0.6, 1.0, 1.4
and from left to right : η = 0.3, 0.5, 0.7, 1.0.

Fig. 7 shows isotherms with different local heat source lengths η and power-law indexes n when Ra =

105 and Pr = 10. Fig. 7 shows that isotherms is basically symmetrical about the central axis of the cavity,
and for different n, as the η increases, the temperature diffusion range in the cavity increases (such as the
isotherms with values of 0.4 and 0.5), indicating that the heat transfer effect is enhanced.
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Fig. 7. Isotherms of Carreau fluid natural convection for different power-law indexes n in a trapezoidal
cavity with different heat source lengths η at Ra = 105 and Pr = 10 : from top to bottom n = 0.6, 1.0, 1.4
and from left to right : η = 0.3, 0.5, 0.7, 1.0.

Further, local Nusselt number Nu(x) at the local heat source and the velocity v(x) in the middle of the
cavity for different power-law indexes n and local heat source lengths η at Ra = 104 and Ra = 105 are
shown in Fig. 8. For different n, as the η increases, the Nu(x) at the center of the bottom decreases, while
the area enclosed by the Nu(x) and the bottom increases. For different n, v(x) increases with the increase
of η. Fig. 8 shows that the effect of η on Nu(x) and v(x) is more significant at Ra = 105 than at Ra = 104.

Fig. 9 shows the variation of average viscosities µavg, average Nusselt numbers Nu0 and the maximum
absolute value of streamfunctions |ψ|max with local heat source lengths η for different power-law indexes
n when Ra = 104 and 105. Fig. 9 shows that with the increase of η, Nu0 and |ψ|max increase, and the
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with different heat source lengths η and power-law indexes n for a fixed Prandtl number Pr = 10 at
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influence of n and η at Ra = 105 is significantly stronger than that at Ra = 104. From Fig. 9, it can be
seen that for a fixed n, the trend of µavg, Nu0 and |ψ|max changing with the increase of η is more obvious at
Pr = 10 than that at Pr = 0.71.
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Fig. 9. The effect of heat source lengths η on the average viscosity µavg, the average Nusselt number Nu0
on the hot wall and the maximum streamfunction |ψ|max for different power-law indexes n and Prandtl
numbers Pr at Ra = 104 (top) and Ra = 105 (bottom).

Tab. 4 gives the quantitative results of the numerical simulation, which shows that for different power-
law indexes n, average Nusselt numbers Nu0 and the maximum absolute value of streamfunctions |ψ|max

show different changes with the increase of local heat source lengths η. In particular, compared with the
effect of η, the effects of n and Prandtl numbers Pr are very weak.
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Table 4. Comparison of numerical results for different Rayleigh numbers and power-law indexes in a
trapezoidal cavity with different heat source lengths η at Pr = 10.

Ra = 104 Ra = 105

η 0.1 0.3 0.5 0.7 1.0 0.1 0.3 0.5 0.7 1.0

µavg 0.8292 0.7582 0.7206 0.7006 0.6915 0.7856 0.7204 0.6949 0.6776 0.6633
n = 0.6 Nu0 0.9213 2.0111 3.0836 4.0404 7.7344 1.5614 3.9932 5.8559 7.4656 11.6143

|ψ|max 3.5153 5.1387 6.2599 6.9520 7.2958 12.9998 18.7960 21.9940 24.2652 25.8977

µavg 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
n = 1.0 Nu0 0.8554 1.6997 2.5169 3.3151 6.9372 1.3287 3.2415 4.7732 6.0276 9.9024

|ψ|max 2.8903 3.8873 4.5404 4.9301 5.1226 10.3053 13.9566 16.0647 17.4935 18.4146

µavg 1.1435 1.2059 1.2441 1.2654 1.2747 1.2024 1.2856 1.3292 1.3559 1.3715
n = 1.4 Nu0 0.8218 1.5578 2.2573 2.9826 6.5665 1.2129 2.8057 4.1342 5.2312 9.0165

|ψ|max 2.5331 3.2619 3.7173 3.9828 4.1154 8.9402 11.5271 13.0482 14.0438 14.6452

5 Conclusion

In this paper, a stabilized streamline–upwind/Petrov—Galerkin (SUPG) finite element algorithm based
on a penalty function is proposed for natural convection of Carreau fluids in an isosceles trapezoidal cavity
with a local heat source, which can realize equal low-order elements. The relevant parameters in the following
ranges are studied : Rayleigh number Ra = 104 and 105, power-law index (i.e., 0.6 ≤ n ≤ 1.4), Prandtl
number 0.1 ≤ Pr ≤ 100, and local heat source length at the bottom 0.1 ≤ η ≤ 1.

Results show that when local heat source lengths are fixed, for different power-law indexes, as Prandtl
numbers increases, average Nusselt numbers increase, indicating that the convective heat transfer is en-
hanced ; and as power-law indexes increase, influences of Prandtl numbers decrease. Results show that for
different power-law indexes, as local heat source lengths increase, average Nusselt numbers and the maxi-
mum absolute value of streamfunction increase, indicating enhanced convective heat transfer. Results also
show that as power-law indexes increase, effects of local heat source lengths decrease, but as Prandtl numbers
increase, effects of local heat source lengths increase.
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Nomenclature

Ra – Rayleigh number Pr – Prandtl number Cu – Carreau number
β – Thermal expansion coefficients, [1/K] ε – Deformation rate tensor g – Mass force, [m2s−1]
α – Thermal diffusion coefficient, [m2s−1] τ – Viscous stress tensor ψ – Streamfunction
I2 – The equivalent of strain rate ρ – Density, [kgm−3] n – Power-law index
µ – Viscosity p – Dimensionless pressure λ – A time constant
γ – Penalty factor T – Dimensionless temperature v – Velocity field
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