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The current research explores the analysis of heat transfer in the rotating Jeffrey 
fluid between two parallel plates, employing the BLMS-ANN approach based on 
the back propagation Levenberg-Marquardt scheme. The fluid-flow is initially de-
scribed by a system of PDE, which is subsequently transformed into a system of 
ODE through appropriate correspondence transformations and boundary condi-
tions. Eventually, the equations are rendered dimensionless using a boundary-lay-
er approximation. By changing parameters including the radiation parameter, Rd, 
Deborah number, λ, viscosity parameter, R, Prandtl number, Reynolds number, and 
Rotation parameter, kr, using the differential transform method, a group of data 
for suggested BLMS-ANN is constructed for several cases. To assess the predicted 
outcomes for specific scenarios, the BLMS-ANN methodology undergoes testing 
validation and training. Subsequently, the proposed model is scrutinized for con-
firmation. The validity of the suggested BLMS-ANN approach is confirmed through 
regression analysis, examination of mean square error, and histogram studies. The 
suggested method differs from both the proposed and reference results with an 
accuracy level between.
Key words: Jeffrey nanofluid, rotating system, differential transform method, 

neural networks Levenberg-Marquardt method, steady flow

* Corresponding authors, e-mail: sislam@pmu.edu.sa; hakeemullah1@gmail.com; aliakgul00727@gmail.com 

mailto:sislam@pmu.edu.sa
mailto:hakeemullah1@gmail.com
mailto:aliakgul00727@gmail.com


Mahariq, I., et al.: Neural Networks Paradigm for Rotating Flow of Jeffrey ... 
3682	 THERMAL SCIENCE: Year 2025, Vol. 29, No. 5A, pp. 3681-3696

Introduction

The ANN are intriguing and important frameworks connected with artificial intel-
ligence (AI). Depending on input which passes through network during the learning process, 
whether external or internal, ANN can take on a number of structures. The ANN employs back 
propagation (BP) approach to implement immediate working out to improve the performance 
of a multi-layer perceptron network. This is most widely applied, successful, and simple to 
learn model for complicated multi-layered systems. Scheme of Levenberg-Marquardt (LM) is 
a revolutionary, convergent, and efficient strategy for ANN that gives numerical solutions for 
various problems of fluid-flow. In 1973 the BP was used by Dreyfus, to change control sys-
tem configurations in accordance to error gradients. Multi-layer network training was achieved 
by Werbos’ (1975) BP method. He developed Linnainmaa’s AD technique more well-known 
by using it with neural networks in 1982 [1, 2]. A common learning process in feed-forward 
multi-layer neural networks is BP.

This method recently employed by some examiners to scrutinize the flow of 
non-Newtonian fluids systems as well as elements of heat and heat transference. Using in-
telligent computing techniques, Ahmad et al. [3] examined the models of non-linear reactive 
fluid transport in micro-vessels and soft-tissues. Using neural networks, Shoaib et al. [4] 
examined creation of entropy in existence of heat radiation and MHD. Wang et al. [5] studied 
impact of wire array electrical characteristics on z-pinch load current. Uddin et al. [6] solved 
the mathematical simulation of unstable flow of thin film of magnetized Maxwell fluid on a 
horizontal revolving disk with chemical reaction and thermos diffusion impacts, using neural 
networks with back propagated by LM scheme NN-BLMS. In order to investigate the impact 
that magnetic fields and Hall current have on the micropolar flow of nanofluid between two 
rotating parallel plates, Ullah et al. [7] and Aljohani et al. [8] utilised ANN by employing 
a BP technique, because of the variations between non-Newtonian and Newtonian fluids, 
numerous non-Newtonian fluid models are developed. Fluids which are not following the 
Newtonian law of viscosity are referred to as non-Newtonian fluids. Ketchup, drilling muds, 
colloidal, certain oils, apple sauce, and suspension solutions are a few types of non-Newto-
nian fluids. A non-Newtonian fluid that has a temporal derivative rather than a convected 
derivative is a Jeffrey fluid, which is the most prevalent and basic model of these fluids. Zokri 
et al. [9] studied Jeffrey nanofluid-flow and MHD with viscous dissipation. Hayat et al. [10] 
explored the 3-D flow of Jeffrey fluid across a linearly stretched surface and used a homotopy 
analysis method to solve the non-linear coupled system of governing equations. Turkyilma-
zoglu and Pop [11] examined how a Jeffrey fluid moved and transferred heat across a shrink-
ing/stretching sheet with a parallel outside flow close to the stagnation point. Shafique et al. 
[12] deliberated the rotating Jeffrey flow for binaries chemical reaction outcomes and activa-
tion energy. In the presence of nanoparticles, Nadeem et al. [13] investigated the continuous 
2-D Jeffrey fluid-flow across a linearly stretched sheet. Das [14] explored the impacts of heat 
transfer and slip of flow of peristaltic Jeffrey fluid. Reddy et al. [15] study the flow of Jeffrey 
fluid between rotationally oscillating disks. Shehzad et al. [16] investigated non-linear ther-
mal radiation of Jeffrey nanofluid in 3-D. Further relevant studies involving Jeffrey fluid can 
be found in the investigations [17-22] and numerous studies therein.

A significant number of articles have recently concentrated on employing nanofluid 
to improve the heat transfer process. Metal oxides and metal particles with maximum diame-
ters of 100 nm suspended in ordinary fluids with low thermal conductivity, such as ethylene 
glycol, oil, pure water and so on, is known as nanofluid. The nanofluids have thermophysical 
properties that improve their performance. The heat transfer equipment shrinks in size due to 
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the use of nanofluids. To prevent aerodynamic friction, nanofluid are employed as a coolant in 
aero-dynamic design, resulting in considerable energy savings. Nanofluids are also utilized to 
accelerate heat transmission in transformers, biomedicine, fuel cells, heat exchangers, micro-
pumps, computer microchips, and food processing systems [23-25]. Choi and Eastman [26] pi-
oneered the use of nanofluids to increase thermophysical properties. Furthermore, he revealed 
experimentally that nanometer size particles are useful for raising the heat conductivity of the 
nanoparticles. Boungiorno [27] investigated the behavior of nanofluids in conservation equa-
tions by introducing the impacts of thermophoresis and Brownian diffusion. Kuznetsov and 
Nield [28] investigated the nanofluid-flow naturally convection of across a flat plate while 
accounting for double diffusion. Using a stretched sheet and a heat source/sink, Goyal and 
Bhargava [29] investigated the impact of velocity slip on the flow and heat transmission of 
a non-Newtonian nanofluid. Turkyilmazoglu [30] investigated a linear stability theory-based 
hydrodynamic stability study of various well-known nanofluids while taking into account of 
nanofluid model of single-phase. Ahmed et al. [31] studied various heat transport features of 
various nanofluids in a corrugated panel. They determined that Fe3O4-water nanofluid had a 
higher capacity for increasing thermal conductivity.

The fluids flow caused by a disk rotation problem is significant in industrial and tech-
nical purposes such as electronic devices, petroleum sector, computer storage devices, medi-
cal equipment, rotating machinery, MHD rotators, and so on. In 1921, the mathematician Von 
Karman [32] examine the fluid-flow issue in a revolving disc. This one is the most frequent 
problem with fluid dynamics. Greenspan [33] investigated the same phenomenon in a rotating 
system, whereas Vajravelua and Kumar [34] investigated hydro magnetic viscous fluid-flow in 
horizontal plates. Turkyilmazoglu [35] examined the influence of magnetic fields on laminar 
flow induced by rotating disc extension. In the analysis, he also addressed the heat transfer im-
pact. Turkyilmazoglu [36] observed that the movement of working fluid caused by disk stretch-
ing is significant in cooling procedure of wall. Asghar et al. [37] employed the analysis of Lie 
group to examine the fluid-flow thermal analysis across a stretchy disk. Rashidi et al. [38] 
investigated the stretched spinning disk problem while generating entropy. Hayat et al. [39] 
investigated the slip process in the presence of MHD using a variable thickness spinning disk. 
Bachok et al. [40] demonstrated heat transmission and nanofluid boundary-layer flow through 
a spinning disc immersed in permeable media. Hayat et al. [41] utilized the HAM to examined 
the impact of a revolving disc on radiative flow. 

While obtaining an accurate analytical solution of the problem can pose challeng-
es, the scientist adopts a blend of numerical and semi-numerical approaches. These include 
methods such as HAM [42], spectral relaxation method [43], Galerkin finite element meth-
od [44], and Keller box technique [45]. The preceding investigation into nanofluid-flow 
across different fluidic systems employs a diverse range of semi-numerical and numerical 
techniques. Additionally, due to their effectiveness and efficiency, numerical computing 
intelligent systems are essential for implementing the RJF-HAP model. Machine learn-
ing techniques have also been integrated into stochastic numerical computing solutions, 
leveraging neural networks to address solutions for both linear and non-linear equations, 
showcasing diverse capabilities across various environments. When these procedures are 
combined, non-linear systems are created in various fields such as COVID-19 models [46, 
47], and many other models flow models [48-52], and non-linear systems of equations [53-
58] All of the mentioned literature drove the authors to study the topic and use stochastic 
approaches to create a new, better, more accurate computer model for fluid dynamics anal-
ysis, such the RJF-HAP model.
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The following aspects provide perspectives on the suggested design-computing approach:
	– The novel AI-based computational intelligence method known as the (RJF-HAP) model has 

been studied using ANN.
	– The mathematical modelling of the ground-breaking scheme RJF-HAP in the form of PDE 

which has been converted to systems of ODE by making necessary relevant change.
	– The DTM can be utilized to provide a dataset for the recommended BLMS-ANN as an 

alternate (RJF-HAP) to employing the radiation parameter, Deborah and Prandtl numbers, 
viscosity parameter, and rotation parameter.

	– Modelling RJF-HAP for various scenarios employs BLMS-ANN training, validation, and 
testing methodologies, and assessment with alignment results validates the correctness of 
proposed BLMS-ANN.

	– The mean square error (MSE), estimated fitness convergence graphs, regression metrics, 
and error histograms demonstrated the efficiency of the proposed BLMS-ANN in represent-
ing the RJF-HAP.

Mathematical frame work of the model

The non-Newtonian Jeffrey fluid-flow is 
taken into account between two parallel, hori-
zontal plates. Where is the distance between the 
lower and upper plates. The co-ordinate system 
that causes fluid and plate to revolve with an 
angular velocity of Ω around the y-axis. Stretch 
the lower plate along the x-axis to keep the ori-
gin constant, assuming that the two forces have 
the same magnitude but different directions. 
The fluid-flow is assumed to be in a steady-state 
where both mass and heat are transferred. The 
geometrical representation of the problem RJF-

HAP is presented in fig. 1. From the previous consideration, the basic continuity equations, 
velocity, and energy are expressed and same as in [19, 20, 33, 34]:

0V∇ +

d 2 ( )
d
V V r V
t

ρ + Ω× +Ω× Ω× = ∇

The A1 indicated first Rivilin-Erickson tensor, in component form:

( ) ( ) 0u v
x y
∂ ∂

+ =
∂ ∂

(1)

( )
*12 ( ) xx xy

u u pu v v S S
x y x y x

µ
ρ ρ
 ∂ ∂ ∂ ∂ ∂

− Ω+ = + − ∂ ∂ ∂ ∂ ∂ 
(2)

*1( ) 2 ( ) xy yy
v v pu u v S S
x y x y x

µ
ρ ρ
 ∂ ∂ ∂ ∂ ∂

+ Ω+ = + − ∂ ∂ ∂ ∂ ∂ 
(3)

(2 ) zx zy
w wu v u S S
x y x y

µ
ρ
 ∂ ∂ ∂ ∂

+ − Ω = + ∂ ∂ ∂ ∂ 
(4)

Figure 1. Flow problem geometry
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where ū , v̄ , and w̄ are the velocity components, p* – the modified pressure of fluid denoted the 
coefficient of kinematic viscosity, and ρ – the fluid density. In eq. (5), cp* is the specific heat, 
T – the temperature, k – the thermal conductivity, and µ0 – the dynamic viscosity. Where Sxx, Sxy, 
and Syy 

represent stress tensor components and Ω is the angular velocity. The physical behavior 
of flow phenomenon is presented 

For Jeffrey fluid, Cauchy stress tensors are defined in [17-22]:
I SΓ Ρ= − + (6)
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where I is the identity tensor and µ – the dynamic viscosity and ratio between relaxation and 
retardation time is represented with λ1 and λ2. The Revilan-Ericson tensor A1 is expressed as 
A1 = (∇V)T + (∇V) where V = [ū , v̄ , 0]. The Sxx, Sxy, and Syy are the stress tensor components, 
determined and expressed:
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The appropriate boundary conditions: 
0,  = 0, 0, , at 0, and 0, 0, 0, athT T w v u ax y u w v T T y h= = = = = = = = = (11)
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where F′(η) is the derivative of F with respect to η. Using eqs. (6)-(10) in eqs. (1)-(5) are con-
verted into to the form:

( ) ( )( ) ( )1 2 2 0iv iv vF R F F F F krG F F FF F Fλ β′′′ ′′ ′ ′ ′′ ′′′ ′+ + − − + − − = (13)

( )(1 ) 2 ( ) ( ) 0G krF R FG GF G F FGλ β′′ ′ ′ ′ ′ ′′ ′′′+ + + − + − = (14)

41 Pr Re 0
3

Rd  ′′ ′+ Θ + Θ = 
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(15)

(0) 1, (0) 0, (0) 0, (0) 1 at 0F G F η′ = = = Θ = = (16)

(1) 0, (1) 0, (1) 0, (1) 0F G F′ = = = Θ = (17)
After simplification, the physical parameters are obtained and defined as the Prandtl 

number Pr = ρn cp*/k = µcp*/k, the rotation parameter kr = Ωh/ax, the radiation parameter  
Rd = aT 4cφ/kK, the viscosity parameter R = ah2/n and λ = λ2a , and β = λ2α is Deborah number.
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Result and discussion

Figure 2 displays the proposed BLMS-ANN within the context of a neural network. 
The suggested BLMS-ANN were implemented using the nftool, a feature configuration meth-
od in the MATLAB neural network package. The weights of the networks were found using 
Levenberg-Marquardt back propagation. Figure 3 shows the whole process of this inquiry as a 
single flow diagram, while fig. 4 shows the proposed BLMS-ANNs paradigm. Using nftool, we 
examine six different RJF-HAP model variants and BLMS-ANN offer the answer. 

Figure 2. The architecture of neural network of the RJF-HAP model

Figure 3. For the RJF-HAP model used the BLMS-ANN workflow method

For Cases 1-6. Figures 5-8 show the BLMS-ANN impacts on the RJF-HAP model. 
Both the first and second figures in the set display the six different cases MSE performance, 
fitting, and error histograms. 

 For Case 1. The R, Prandtl number, Rd, λ, kr, and Reynold number. For all four RJF-
HAP scenarios, the regression analysis and state transitions are shown in figs. 6(a) and 6(b). 
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Figure 4. A specific neural paradigm’s 
arrangement

In the meantime, for Scenarios 1-6 of Case 1 in the 
RJF-HAP model. Table 1 lists the physically signif-
icant quantities.

For testing processes, sub figs. 5(i, ii) (a, b, c) 
determine the convergence of confirmation, train-
ing, and MSE evolutions for Scenarios 1-6 of RJF-
HAP model. The performance is adept with MSE 
nearby 0.119⋅10–9, 0694⋅10–10, 0.795⋅10–9, 0.634⋅10–

10, 0.595⋅10–10, and 0.503⋅10–10. The suggested 
method works better and more accurately when the 
MSE is less. Figures 5(i) and 5(ii) show the results 
of six different scenarios with inputs ranging from  
0 to 1, a step size of 0.01 and the RJF-HAP model’s 

Table 1. Potential use cases for the RJF-HAP model are explored across various scenarios

Scenario Case
Physically significant quantities of notable interest

R Pr Rd λ kr Re β

1
1 1 1 0.4 3 0.1 3 0.1
2 3 1 0.4 3 0.1 3 0.1
3 5 1 0.4 3 0.1 3 0.1

2
1 1 0.7 0.4 3 0.1 3 0.1
2 1 0.9 0.4 3 0.1 3 0.1
3 1 1.1 0.4 3 0.1 3 0.1

3
1 1 1 0.3 3 0.1 3 0.1
2 1 1 0.7 3 0.1 3 0.1
3 1 1 0.8 3 0.1 3 0.1

4
1 1 1 0.4 1 0.1 3 0.1
2 1 1 0.4 3 0.1 3 0.1
3 1 1 0.4 5 0.1 3 0.1

5
1 5 1 0.4 3 0.1 3 0.1
2 5 1 0.4 3 0.11 3 0.1
3 5 1 0.4 3 0.12 3 0.1

6
1 1 1 0.4 3 0.1 1 0.1
2 1 1 0.4 3 0.1 3 0.1
3 1 1 0.4 3 0.1  5 0.1

efficiency. Using the numerical and associated conclusions from the Differential Transform 
method, we can verify the obtained outcomes and the plot of error dynamics. It is worth noting 
that the highest error for train, validation, and test is less than 1.74⋅10–10, 0.160⋅10–9, 0.195⋅10–08, 
0.114⋅10–9, 0.147⋅10–9, and 0.141⋅10–9. The dynamics error and outputs of the RJF-HAP model 
for Case 1 of various situations for all inputs are also analyzed. This is in addition the error 
histograms that are displayed in figs. 5(i) and 5(ii). A comparison of the average value of the 
error bin with the zero line reveals an error that is close to –1.9⋅10–06, –1.3⋅10–06, –1.6⋅10–07, 
–9.32⋅10–07, and –1.9⋅10–06. The values of the gradient of Levenberg-Marquardt and the step 
size of Mu are quite near to each other, with the values being 1.00 ⋅10–08, 1.00⋅10–09, 1.00⋅10–09, 
1.00⋅10–09, 1.00⋅10–09, and 1.00⋅10–09, along with 9.99⋅10–08, 9.99⋅10–08, 9.99⋅10–08, 9.99⋅10–08, 
9.99⋅10–08, and 9.99⋅10–08 are presented in sub figs. 6(i) and 6(ii) (a, b, c).
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Table 2. The consequences of BLMS-ANNS for Case 1-3

Scenario Case
MSE

Execution Gradient Mu Epoch Time
Training Validation Testing

1

1 1.1902⋅10–10 1.7448⋅10–10 1.3373⋅10–10 1.19⋅10–10 9.99⋅10–08 1⋅10–08 208 3

2 3.5067⋅10–10 1.9697⋅10–09 1.4942⋅10–10 3.51⋅10–10 9.95⋅10–10 1⋅10–08 315 2

3 2.8995⋅10–10 1.6285⋅10–10 1.9539⋅10–10 2.89⋅10–10 9.97⋅10–08 1⋅10–08 338 2

2

1 6.9358⋅10–11 1.6022⋅10–10 6.1822⋅10–11 6.94⋅10–11 9.99⋅10–08 1⋅10–08 512 1

2 2.1763⋅10–10 4.5756⋅10–10 1.9357⋅10–11 2.17⋅10–11 9.94⋅10–08 1⋅10–09 210 2

3 3.0689⋅10–10 1.0945⋅10–10 3.6237⋅10–11 3.07⋅10–10 9.93⋅10–08 1⋅10–09 256 1

3

1 7.9456⋅10–10 5.8137⋅10–10 1.9543⋅10–09 7.95⋅10–10 9.93⋅10–08 1⋅10–09 385 1

2 5.9741⋅10–11 6.4587⋅10–11 8.3458⋅10–11 5.97⋅10–11 9.93⋅10–08 1⋅10–08 343 1

3 6.4245⋅10–11 1.4403⋅10–10 1.1095⋅10–10 6.42⋅10–10 9.98⋅10–08 1⋅10–08 495 1

Table 3. The consequences of BLMS-ANNS for Case 4-6

Ssenario Case
MSE

Execution Gradient Mu Epoch Time
Training Validation Testing

4

1 6.3472⋅10–11 1.5442⋅10–11 1.4148⋅10–10 6.34⋅10–11 9.98⋅10–08 1⋅10–09 171 1

2 5.6428E–10 4.3942⋅10–10 1.4740⋅10–10 5.64⋅10–10 9.96⋅10–08 1⋅10–09 173 1

3 5.1241⋅10–11 1.2014⋅10–11 2.9285⋅10–11 5.12⋅10–11 9.95⋅10–08 1⋅10–09 175 2

5

1 5.9489⋅10–11  1.4175⋅10–10 9.0535⋅10–11 5.95⋅10–11 9.92⋅10–08 1⋅10–09 171 2

2 5.4757⋅10–10 2.9447⋅10–10 6.5145⋅10–10 5.45⋅10–10 9.93⋅10–08 1⋅10–09 168 1

3 4.8397⋅10–11 1.9341⋅10–10 1.3388⋅10–10 4.84⋅10–11 9.92⋅10–08 1⋅10–09 169 1

5

1 5.0305⋅10–11 4.4779⋅10–10 7.0974⋅10–11 5.03⋅10–11 9.86⋅10–08 1⋅10–09 180 2

2 5.6034⋅10–11 8.8148⋅10–11 7.1823⋅10–11 5.60⋅10–11 9.88⋅10–08 1⋅10–09 186 2

3 5.5431⋅10–10 9.7908⋅10–10 1.2144⋅10–09 5.54⋅10–10 9.95⋅10–08 1⋅10–08 204 1

Case 1 of the RJF-HAP model demonstrates the capability, reliability, and conver-
gence of BLMS-ANN through its results and visual representations. One typical way to classify 
data in regression analysis is via a correlation analysis. Results from testing, training, and vali-
dation of individual models all point to R-values close to one, demonstrating that BLMS-ANN 
resolves the RJF-HAP model effectively. For Case 1 of the different RJF-HAP model Scenarios 
1-6, the corresponding numerical values in tabs. 2 and 3 show that the MSE performance for the 
proposed BLMS-ANN is close to 10–11. Tables 2 and 3 present numerical results demonstrating 
that BLMS-ANN successfully executes the RJF-HAP model. 

Figure 7(i) displays the results of the BLMS-ANN for the radial and tangential veloc-
ities, G(ŷ), and Θ(ŷ), while fig. 7(ii) displays the results for the other six scenarios of the RJF-
HAP paradigm. The influence on F′(η) and Θ(η) due to the variation of R, Prandtl number, and 
Rd for RJF-HAP model Scenarios 1-3 is labelled in sub fig. 7(i) (a, b, c). Figure 7(i) (a) shows 
the variant in viscosity parameter for F′(η). It is seen that higher values of viscosity parameter, 
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the velocity field retards and it happens due to the reason that viscosity of the fluid produces 
the resistance to the fluid-flow. Figure 7(i) (b) illustrates the influence of the Prandtl number on 
Θ(η). It is also observed that Θ(η) decreases as the Prandtl number increases, which is owing 
to larger levels of momentum diffusivity. Figure 7(i) (c) illustrates the influence of Rd on Θ(η). 
Radiation increases the heat created by the fluid’s shear stresses, resulting in a rise in the fluid’s 
temperature. As a result, for RJF-HAP model figs. 7(ii) (a, b, c) show the results of distinct mag-
nitudes for Deborah number, λ, rotation parameter, kr, and Reynolds number for F′(η), G(η), and  
Θ(η) for Scenarios 4-6, respectively. Figure 7(ii) (a) describes the impact of Deborah number on 
the F′(η). The velocity fields reduce with the increasing values of the Deborah number. Figure 
7(ii) (b) depicts the effect of the rotation factor on G(η) profile. It is obvious when the rotation 
parameter increases then it raises the fluid motion. Sub-fig. 7(ii) (c) shows the influence of the 
Reynolds number on Θ(η). The Θ(η) profile between two plates drops as Reynolds number 
upsurges.

Figure 5(i). The MSE, fitness, and error histogram for Case-1 of Scenarios 1-3;  
(a) MSE performance, fitness, and error fistogram for Case 1 of Scenario 1,  
(b) MSE performance, fitness, and error histogram for Case 1 of Scenario 2, and  
(c) MSE performance, fitness, and error histogram for Case 1 of Scenario 3
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As a result of the comparison between the results of BLMS-ANN and the convention-
al differential transform method solutions in Case 1 of all 6 scenarios, it was obtained that the 
absolute error was relatively match to the accurate measurements. This was demonstrated in 
sub-figs. 8(i) (a, b, c) and 8(ii) (a, b, c) for Scenarios 1-6. 

In the sub fig. 8(i) (a, b, c), the absolute error accomplish values for Cases 1-3 for the 
f ′(η) and for θ(η) profile are 10–9 to 10–4, 10–7 to 10–4, and 10–7 to 10–4, whereas for f ′(η) and for 
θ(η) profile in sub fig. 8(ii) (a, b, c), the error attain values for Cases 4-6, are 10–8 to 10–4, 10–9 

to 10–4, and 10–7 to 10–4, respectively. 

Conclusions

This section includes the key features of the study. Here the RJF-HAP model is nu-
merically studied to compute the Jeffrey nanofluid with heat transfer between two horizontal 
parallel plates. 

Figure 5(ii). The MSE performance, fitness, and error histogram for Case 1 of Scenarios 4-6; 
(a) MSE performance, fitness, and error histogram for Case 1 of Scenario 4,  
(b) MSE performance, fitness, and error histogram for Case 1 of Scenario 4, and  
(c) MSE performance, fitness, and error histogram for Case 1 of Scenario 6
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Figure 6(i). Regression analysis and state transition for Case 1 of Scenario 1-3;  
(a) regression analysis and state transition for Case 1 of Scenario 1,  
(b) regression analysis and state transition for Case 1 of Scenario 2, and  
(c) regression analysis and state transition for Case 1 of Scenario 3
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Figure 6(ii). Regression analysis and state transition for Case 1 of scenarios 4-6;  
(a) regression analysis and state transition for Case 1 of Scenario 4,  
(b) regression analysis and state transition for Case 1 of Scenario 5, and  
(c) regression analysis and state transition for Case 1 of Scenario 6
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Figure 7(i). Analyzing the suggested BLMS-ANN and their numerical outcomes for the 1-3 RJF-HAP model 
scenarios; (a) impact of R on F′(η), (b) impact of Prandtl number on θ(η), and (c) impact Rd of on Θ(η)

Figure 7(ii). Quantitative analysis of the suggested BLMS-ANN for the 4-6 RJF-HAP model scenarios; 
(a) impact of λ on F′(η), (b) impact kr of on G(η), and (c) impact of Reynolds number on Θ(η)

Figure 8(i). For the benchmark set of data, the results of the absolute error analysis are displayed,  
and the RJF-HAP model Scenarios 1-3 are analyzed with the help of the BLMS-ANN that are 
recommended; (a) absolute error of R on F′(η), (b) absolute error of Prandtl number on Θ(η), and 
(c) absolute error of Rd on Θ(η)

Figure 8(ii). For the benchmark set of data, the results of the absolute error analysis are  
displayed, and the RJF-HAP model Scenarios 4-6 are analyzed with the help of the BLMS-ANN 
that are recommended; (a) absolute error of λ on F′(η), (b) absolute error of kr on G(η), and  
(c) absolute error of Reynolds number on θ
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	y The process of constructing an ANN system that employs the LM technique with back BP 
is employed to investigate the solution of a present model that demonstrates the relationship 
between RJF-HAP and certain situations.

	y Using proper correspondence variables, the PDE framework provides a description of the 
process of converting mathematical flow into a non-linear PDE framework.

	y The RJF-HAP model relies on the data collected from the DTM, which contains variations 
from many physical parameters like the radiation parameter, Deborah number, viscosity 
parameter, Prandtl number, Reynolds number, and rotation parameter.

	y The RJF-HAP reference dataset is constructed by varying different versions, with portions 
allocated for the validation, testing, and training 5%, 5%, and 90% of BLMS-ANN.

	y The method’s precision verifies a range of 1009 to 1011 for the suggested results, and this is 
corroborated by numerical and graphical depictions of convergence error histogram graphs, 
MSE, and regression dynamics. 
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