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Sexually transmitted diseases are infectious diseases and a significant threat to 
human health. In this work, a standard integer-order model of Chlamydia is trans-
formed into a fractional-order stochastic mathematical model. The steady-state of 
the continuous system is determined and considered for disease forecasting and 
stability analysis. The fractional stochastic system is tested for stability at both 
equilibrium states by following the classical Jacobian matrix theory. It is investi-
gated the underlying epidemic model has a unique solution. The non-negative and 
bounded solutions of the model also provide a deeper understanding of the disease 
propagation. Then, a finite difference numerical algorithm is constructed for ap-
proximating the solution. To assess the efficiency of the algorithm, non-negativity 
and boundedness of the numerical method are investigated. Furthermore, the al-
gorithm is applied to a test example to obtain the simulated graphs. Ultimately, the 
study's outcomes are summarized in the form of conclusions. 
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Introduction  

Sexually transmitted diseases (STD) are propagated by some pathogens. Chlamydia 

trachomatis (CT) infection is the most prevalent STD [1]. Chlamydia infection is caused by the 

bacterium named Chlamydia trachoma. Sexual activity with an infected individual and an un-

hygienic environment are two key reasons for transmission of Chlamydia. Approximately 90 

million new cases of Chlamydia are reported each year, making it a serious public health con-

cern. An infected person can transmit the infection to other persons through intercourse, anal 

sex, or oral sex. Other transmission possibilities may include handshakes, sharing beds, towels, 

and clothes. In exceptional cases, a person may acquire conjunctivitis if vaginal fluid comes 

into contact with the eyes. The CT is also the primary cause of blindness worldwide [2]. The 

CT affects both genders, with approximately 4.2% of females and 2.7% of males in the whole 

population worldwide [3, 4]. Teenagers are mainly infected with Chlamydia. Young girls aged 

15 to 24 have a higher risk of contracting the infection [5]. Chlamydia infection damages the 

rectum and cervix and severely affects the reproductive system. The most common STD include 

chlamydia, gonorrhea, syphilis, herpes, human papillomavirus (HPV), and human immunode-

ficiency virus (HIV) [6-16]. 

Stochastic epidemic models serve as mathematical frameworks for revealing the 

transmission behavior of infectious diseases, including STD. Stochastic models account for the 

inherent unpredictability in transmission dynamics, in contrast to deterministic models, which 

rely on fixed parameters and continuous variables [10]. When a disease spreads mainly due to 

how people interact one-on-one, or when there aren't many people around, randomness be-

comes extremely important. These models, which incorporate randomness, help us better un-

derstand how infectious diseases spread in unpredictable ways, especially when they involve 

one-on-one interactions. They use these fancy stochastic epidemic models to check out STD, 

looking at all kinds of stuff that messes with how diseases spread in a group of people. These 

models typically incorporate factors such as who's hooking up with whom, the likelihood of 

someone contracting the disease, and behaviors that accelerate its spread. Those stochastic ep-

idemic models give us a good handle on how all sorts of things come together to spread STD 

in a bunch of people [13]. These stochastic epidemic models help us understand how different 

factors affect the spread of STD among people. They combine various elements to get the com-

plete picture. Experts use these stochastic epidemic models to dig into STD, looking at all kinds 

of factors that mess with how diseases spread in a population. These models typically include 

factors such as who's hooking up with whom, how easily the disease spreads, and what people 

are doing that accelerates its spread [17-19].  

The purpose of this article is to improve and expand the work on [20] by considering 

an accurate CT infection model with the appropriate non-linear frequency rate to execute a 

complete analysis of the resultant model. 

Model description 

The S(t), E(t), IS(t), IU(t), and R(t) are the state variables, and the fractional order chla-

mydia model [20] is presented by a system of equations given in: 
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With initial conditions S(0) = S0 ³ 0, E(0) = E0 ³ 0, IS(0) = IS0 ³ 0, IU(0) = IU0 ³ 0, R(0) 

= R0 ³ 0. The basic reproduction number for system (1), denoted by R0, is: 

 
( )( )
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0

2 3

b B
R

b b
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+ +
  (2) 

System (1) possesses two equilibrium points, specifically the disease-free steady-

state, G0, and endemic steady-state, G1, given by 
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Analysis of model  

In this section, we will analyze the CT model by investigating the positivity as well 

as the boundedness of the model. To this end, we construct some benchmark results.  

Theorem 1. For the given initial condition at t = 0, S(t) = S0 > 0, E(t) = E0 > 0, IS(t) = 

IS0 > 0, IU(t) = IU0 > 0, R(t) = R0 >0, the solution of (S(t),E(t),IS(t),IU(t),R(t)) Î R5 is non-negative 

[21]. 
Proof. For the fractional differential equation model. We define the norm as 

( )
sup

f

f t

t Df =   

Let’s consider 



Ayaz, A., et al.: Mathematical and Numerical Investigation of … 3672 THERMAL SCIENCE: Year 2025, Vol. 29, No. 5A, pp. 3669-3679 

0 1 6 0 1( ) – – ,  ( ) ( ) 0c c
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Similarly, proceed with the rest of the equations. We conclude that the model holds positivity. 
Theorem 2. For the initial condition, S(t) = S0 > 0, E(t) = E0 > 0, IS(t) = IS0 > 0, IU(t) = 

IU0 > 0, R(t) = R0 >0, the solution of system (1) is uniformly bounded. 
Proof. By adding all the equations of system (1), we have 

0 ( ) – ( )c
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Which is required. 

Stability analysis 

In this section, we will investigate both the local stability of the model at the disease-

free state and the global stability at both steady-states. 

 Local stability 

Using the Jacobian matrix approach, we examine the local stability of the model at 

the disease-free equilibrium.  

Theorem 3. The disease-free steady-state exhibits local asymptotic stability if 0 < R0 

< 1. 

Proof. By using Jacobian matrix theory, the proof is straightforward [20].  

Global stability 

Here, we will present the global stability of both equilibrium states. 
Lemma 1. Let : {0}y R R+ + →  be a continuously defined function and let t be non-

negative, a Î R+ the following inequality is satisfied: 

*
* *

*
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y t y
D t y t y y D y t

y ty
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Theorem 4. The system (1) shows global asymptotically stable behavior at DFSS if 

R0 < 1. 
Proof. We construct a candidate Lyapunov function as: 

0 0

1 0
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S
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S
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= + + + + 
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Using Lemma 1, we have 
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1 0( ) 0 if 1.tD L R    It is concluded that the system exhibits global asymptotic stability at the 

disease-free equilibrium point when R0 < 1. 

Theorem 5. The system is GAS (globally asymptotically stable) at ESS if R0 > 1. 
Proof. Consider a candidate Lyapunov function, we have 
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2 0( ) 0 if 1.tD L R    It is concluded that the system exhibits global asymptotic stability at the 

endemic equilibrium when R0 > 1. 

Chlamydia model with Caputo derivative and 

stochastic components 

Finally, we explore a stochastic expansion of fractional epidemic models, employing 

diverse stochastic methodologies found in existing literature. We examine the subsequent set 

of stochastic differential equations, expanding upon our fractional epidemic model: 
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Analysis of existence and unique solution of 

the stochastic model 

This section address the regularity-mapping properties of the existence of a unique 

solution within the framework of analytical solutions of the 1st order system of non-linear Sto-

chastic dynamical system (3) together with its suitable initial data, namely, S0, E0, IS0, IU0, and 

R0. System (3) with its corresponding initial conditions is equivalent to the following fixed-

point operators. The system below is analogous to Volterra-type integral equations: 
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In each of the previous operators, the 1st integral is bounded. To estimate the stochastic 

integral 
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Now we are in a position to conduct IVP (3) is uniquely solvable, the Contraction 
Mapping principle in the Banach spaces in Ito’s sense. Finally, summing up the above calcula-

tion, we prove the following result. 

Theorem 6. Suppose the right-hand sides of system (9) are Lipchitz continuous in S, 
E, IS, IU, and R, respectively. Then the system is uniquely solvable in the sense of Ito.  



Ayaz, A., et al.: Mathematical and Numerical Investigation of … 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 5A, pp. 3669-3679 3675 

Numerical schemes 

This section presents a numerical scheme used for studying chlamydia disease. 

Using GL – NSFD inplace of 0
c

tD : 
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Doing it in the same manner, we have: 
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Theorem 7. Positivity. Suppose that every state variables and controlled parameter are 

positive or zero, i.e., S0, E0, IS0, IU0, and R0 ³ 0. Then Sn+1, En+1, ISn+1, IUn+1, Rn+1 ³ 0, " n Î Z+. 
Proof. Since, 
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as all discrete state variables and parameters are positive. The principle of mathematical induc-

tion rigorously establishes the proof. Therefore Sn+1, En+1, ISn+1, IUn+1, Rn+1 ³ 0. 

Theorem 8. Boundedness. Suppose that S0 + E0 + IS0 + IU0 + R0 = N(N0,q), and all the 

parameters are positive for q Î (0,1). Then there is a constant 
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also, s1dB1 = s2dB2 = s3dB3 = s4dB4 = s5dB5 = sdB, such that Sn+1, En+1, ISn+1, IUn+1, Rn+1 = 

N(Nn+1,q), for n = 0,1,2,3, …,Nn+1. 
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Proof. Adding the equations and rearranging the previous equations 
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The proof is confirmed through the application of mathematical induction, where 

N(Nn+1,q) represents the conclusion or final point in this series of linked identities and inequal-

ities. 

Numerical simulations 

With the help of the given parametric values [20], the broadcasting of chlamydia has 

been simulated to demonstrate the actions of the virus. 

The graphs in fig. 1 display the evolution of various state variables for the chla-
mydia disease. All the graphs in this figure indicate that they accurately hit the target point. 
Each graph illustrates a distinct convergence trajectory toward the target point, influenced by 

the specific value of q. Similarly, all the graphs in fig. 2 demonstrate the progress behavior 
at the ESS point. It is noted that each graph attains its true convergence with some specific 
rate, depending upon the value of q. So, the fractional order of the differential operator sig-

nificantly influences the dynamical behavior, effectively regulating the evolution speed of the 

state variables. A key characteristic of the proposed scheme is its ability to converge accurately 

Figure 1. Graph of state variables at 
the disease-free equilibrium point at 
controlled parametric values 
discussed in tab. 1 
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to the fixed points corresponding to the carious values of q. On these grounds, it can be said 
that the reliability of the scheme is marvelous. 

Table 1.  Values of parameters and state variables 

Parameters Description 

sb0 Initial value of the susceptible baby 

sd0  Initial value of susceptible adult  
i0 Initial value of infected 

r0 Initial value of recovered 

w0 Initial value of the water contaminated 

mq Natural birth/death rate 

m Rate of effective contacts 

ab Infective contact rate of infected individuals and susceptible babies 

ad Infective contact rate of infected individuals and susceptible adults 

bb Infective contact rate of susceptible babies and contaminated water 

bd Infective contact rate of susceptible adults and contaminated water 

d Growth rate from susceptible babies to susceptible adults 

g Recovery rate 

Figure 2. Graphs of state variables at 
the endemic equilibrium point at 
controlled parametric values are 
discussed in tab. 1.  
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Conclusion 

Epidemiological modeling serves as a fundamental approach to analyzing the trans-

mission dynamics and developing effective strategies for managing infectious diseases. How-

ever, in practical situations, the criteria used to represent the disease might not be precise. A 

classical integer-order model of chlamydia is transformed into a fractional-order stochastic 

model for a deeper understanding of the virus's dynamical features. The projected model ex-

hibits positivity and boundedness, and it possesses a unique solution. Additionally, the system 

reflects the local and global stable behavior at steady-states. Similarly, the numerical algorithm 

maintains positivity and boundedness, indicating that the numerical scheme maintains the in-

herent structure and qualitative behavior of the state variables. Finally, a test example is con-

sidered to verify the physical properties of the numerical design. The analysis confirms that the 

proposed scheme yields solutions that remain positive and bounded. Moreover, the solutions 

converge towards the true steady-states with different rates of convergence. The simulated 

graph confirms that the rate of convergence is directly proportional to the value of the fractional 

order parameter q. 
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