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The increasing use of electric vehicles necessitates robust safety measures, par-
ticularly in battery management systems. This study emphasizes predictive 
maintenance by introducing a proactive approach to fire safety management us-
ing machine learning. The behavior of 60% Nickel, 20% Manganese, and 20% 
Cobalt (NMC 622) prismatic cells under mechanical impact was investigated, 
with CO and CO2 gas emissions monitored as early indicators of thermal runa-
way, a phenomenon that can lead to rapid and uncontrollable temperature in-
creases if undetected. A real-scale experimental set-up simulated mechanical im-
pacts, and the collected data were analyzed using MATLAB to derive meaningful 
insights. Four machine learning models – coarse tree, binary GLM-LR, efficient 
linear support vector machines, and Gaussian Naive Bayes – were trained and 
validated to predict the likelihood of thermal runaway based on gas emission pat-
terns. This proactive approach enhances battery reliability and safety by ena-
bling early intervention in critical areas, ensuring passenger safety. By address-
ing a significant gap in current research, this study contributes to the develop-
ment of smarter and safer electric vehicles. 

Key words: thermal runaway, predictive maintenance, electric vehicle batteries, 
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Introduction  

The rapidly increasing use of electric vehicles has made the safety and reliability of 

battery systems critical. In particular, thermal runaway is one of the biggest risks, as it can 

lead to fires or explosions due to uncontrolled temperature increase in battery cells [1]. In lith-

ium-ion batteries (LIB), this is associated with mechanisms such as deformation of the SEI 

layer [2], reactions between the electrolyte and the electrode [3], and reactions between the 

binder material and the electrode [4], which can cause a short circuit [5]. During thermal run-

away, the temperature can exceed 1000 °C and toxic gases can be released [6]. This poses a 

serious fire risk due to the high energy density batteries in electric vehicles carrying a higher 

fire load compared to conventional vehicles [7]. The release of flammable gases such as hy-

drogen, methane, and CO during thermal runaway makes fires more difficult to control [8]. 

–––––––––––––– 
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This study aimed to predict the probability of thermal runaway by monitoring the 

CO and CO2 gas emissions when NMC 622 prismatic cells were subjected to mechanical im-

pacts. The gas emissions were recorded in a real-scale experimental set-up and analyzed with 

MATLAB. The analysis results were applied to four machine learning (ML) models (Coarse 

tree, Binary GLM-LR, Efficient linear support vector machines – SVM, Gaussian Naive 

Bayes – GNB to predict the probability of thermal runaway. The performance of the models 

was compared and the most effective method for early detection and intervention was deter-

mined. The study aims to provide early warning and preventive safety in critical areas by in-

tegrating these prediction models into the management system of electric vehicles batteries. 

This proactive approach increases the reliability and safety of batteries, ensuring longer life 

and safety of electric vehicles. This approach aims to fill an important gap in the existing lit-

erature in the field of battery safety [9]. 

Literature review 

Artificial intelligence (AI), emerging in the 1950’s, has yet to achieve a universal def-

inition in literature. Broadly, AI is a branch of computer science that examines the ability of 

machines to perform tasks considered intelligent when done by humans. John McCarthy defines 

AI as machines capable of behaving like humans, while Nabiyev views it as the ability to per-

form cognitive processes such as reasoning, learning, and generalization [10]. The foundation of 

AI was laid by Turing’s 1950 question, Can machines think? and the term was formalized at the 

Dartmouth Conference in 1956 [11, 12]. Early studies focused on symbolic reasoning, while 

expert systems became prominent in the 1980’s, followed by ML and neural networks in the 

1990’s [13, 14]. Today, AI continues to advance rapidly, with significant progress in deep learn-

ing, reinforcement learning, and natural language processing [15]. 

Machine learning 

The ML, a subset of AI, focuses on enabling computer systems to perform tasks by 

learning from data without explicit programming. Introduced in the 1980’s, ML relies on 

training data to create statistical models, with applications like spam detection and image 

recognition [10]. The ML comprises supervised, unsupervised, and semi-super-vised learning. 

In this study, supervised ML models used and explained at the below. 

Supervised learning: This method uses labeled data for training, enabling models to 

predict outputs for new inputs. It is widely applied in tasks such as anomaly detection in cy-

bersecurity and disease diagnosis in healthcare [16, 17]. Supervised learning involves training 

and testing phases to optimize model accuracy using labeled datasets [18]. The future of AI 

and ML involves developing more advanced algorithms to tackle complex problems efficient-

ly while addressing limitations like computational demands and data quality [19, 20]. 

Coarse tree 

Decision trees were developed by William Belson and Ross Quinlan in the 1960’s. 

They are used in fields such as data mining, finance, healthcare, and marketing for classifica-

tion and regression problems. The advantages of decision trees include their ease of under-

standing and interpretation, computational efficiency, and ability to handle missing data [21]. 

The Coarse tree model is a type of decision tree that simplifies the decision-making 

process by using fewer splits, making it fast and easy to train. This model is particularly pre-

ferred in scenarios where interpretability and speed are crucial, and it enhances computational 

efficiency when working with large datasets. It classifies data based on simple decision rules 
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derived from threshold values of specific features and has been successfully applied in various 

fields, such as classifying high-strength concrete mix designs and diagnosing and managing 

plant diseases in agriculture. However, its simplicity can limit performance on complex da-

tasets, and its accuracy depends on the size and quality of the dataset. To improve perfor-

mance, techniques like cross-validation, integration with more complex methods, and parallel 

processing can be employed [22, 23]. 

Binary generalized linear model logistic regression 

Logistic regression was introduced by David Cox in 1958. It is used in various fields 

such as medicine, social sciences, economics, and engineering to predict binary outcomes. 

The advantages of logistic regression include its effectiveness in predicting binary outcomes, 

high interpretability of the model, and reduction of overfitting risk [24]. 

Binary GLM-LR is a statistical method used for binary classification problems 

where the outcome variable has two possible outcomes. This model estimates the probability 

of a given input belonging to a particular class. It is widely used in fields such as medical re-

search, social sciences, and engineering. In medical research, it is commonly used to predict 

the presence or absence of a disease based on various predictors. The model estimates the 

probability of the dependent variable through the logit transformation of the independent vari-

ables. This method retrieves true conditional probabilities when the independent variables are 

in a log-linear form [25]. The model has been successfully applied in various fields. For in-

stance, it has been used in medical diagnostics to predict the presence or absence of diseases. 

In one study, it achieved high accuracy rates in predicting diseases such as chronic kidney 

disease [26]. Additionally, it has been used in social sciences to predict the likelihood of indi-

viduals exhibiting certain behaviors. However, the model has some limitations. Specifically, 

the assumption of conditional independence of independent variables may not always hold 

true in real-world data, which can negatively impact the model performance. Moreover, the 

accuracy of the model depends on the size and quality of the dataset [27]. 

Efficient linear support vector machines 

The SVM was developed by Vladimir Vapnik and his team in 1992. They are used in 

various fields such as text classification, image recognition, bioinformatics, and many others. 

The advantages of SVM include its effectiveness in high-dimensional data, high overall per-

formance, and reduction of overfitting risk [28]. Efficient linear SVM is an ML algorithm that 

is a variant of the standard SVM, providing high accuracy and efficiency in classification 

problems while maintaining classification accuracy. This model is particularly effective in 

high-dimensional spaces and has been applied in software reliability prediction, outperform-

ing other algorithms. Efficient linear SVM focuses on optimizing computational efficiency, 

especially when working with large and high-dimensional data sets. It uses various optimiza-

tion techniques to reduce computational costs. This model finds linear separating hyperplanes 

using linear algebra and optimization methods. Specifically, it addresses multi-objective op-

timization problems aiming to balance multiple objectives such as classification error and the 

number of non-zero elements in the separating hyperplane [29]. 

Efficient linear SVM has been successfully applied in various fields, such as large 

data scenarios where subsampling methods reduce training samples for faster problem-solving 

without significant accuracy loss, and in agriculture for energy-efficient UAV management 

[30, 31]. However, it faces challenges with computational complexities in large-scale training 

sets and high-dimensional datasets where subsampling methods become less effective. Im-
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provements like least squares-based SVM and multi-objective optimization approaches en-

hance computational speed and balance feature selection with model complexity [29, 30]. De-

spite limitations, efficient linear SVM remains a key algorithm, with ongoing research im-

proving its performance and applicability for complex classification problems.  

Gaussian Naive Bayes 

Naive Bayes classifiers were introduced in the 1960’s, and GNB is a variation of 

these classifiers. They are used in various fields such as text mining, spam filtering, medical 

diagnosis, and many others. The advantages of Naive Bayes classifiers include their simplici-

ty and speed, good performance even with small datasets, and effectiveness under the assump-

tion of feature independence [32]. The GNB is a probabilistic classifier based on Bayes' theo-

rem, if features follow Gaussian distribution. This model is simple yet powerful, particularly 

effective when the normal assumption is held. The GNB models have been used to analyze 

patient data to predict the presence of diseases such as chronic kidney disease [26]. In text 

classification, GNB is used to categorize documents based on their content by assuming that 

word frequencies follow a Gaussian distribution [31]. Additionally, GNB assists in image 

recognition tasks by classifying images based on pixel intensity values [33]. The assumption 

that data follows a Gaussian distribution simplifies the calculation of probabilities, making 

GNB a computationally efficient and straightforward model. The probability of belonging to a 

particular class is calculated using the Gaussian probability density function [26]. 

Despite its advantages, GNB has several limitations. One major challenge is the as-

sumption of feature independence, which may not hold true in real-world data, leading to 

suboptimal performance when features are correlated. Additionally, the assumption of Gauss-

ian distribution for continuous features may not always be valid, necessitating techniques such 

as data transformation or discretization [31]. To address these challenges, various improve-

ments and variants of GNB have been proposed. For example, the Three-way incremental Na-

ive Bayes classifier combines incremental learning with three-way decision theory to handle 

dynamic data and improve classification performance [26]. Another approach involves using 

fuzzy discretization to convert continuous features into categorical ones, enhancing the model 

robustness [31].  

Performance evaluation 

In ML, four key metrics are used to evaluate the performance of classification mod-

els: accuracy, precision, recall, and F1 score. These metrics are important for analyzing the 

model predictive capabilities and classification success. Table 1 used for these values derived 

from the confusion matrix is given. 

Table 1. Confusion matrix for two-class classification 

Actual Positive Negative 

Predicted positive TP FP 

Predicted negative FN TN 

 

Table 1 shows the true positives, TP, false positives, FP, false negatives, FN, and 

true negatives, TN, values of the confusion matrix used in binary classification. In this study, 

normal, N, conditions represent standard situations, while Stage 1, S1, represents smoke-

forming and pre-ignition, conditions. If the model prediction is positive and the actual condi-



Senyurek, U., et al.: Fire Prevention Strategies in Electric Vehicle Batteries using … 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 4B, pp. 2955-2966 2959 

tion is abnormal, it is a TP. If the prediction is positive but the actual condition is normal, it is 

an FP. If the prediction is negative but the actual condition is abnormal, it is an FN. If the 

prediction is negative and the actual condition is normal, it is a TN. 

Accuracy is the most common evaluation metric for classification models and 

measures the ratio of correct predictions (TP and TN) to total predictions. It is calculated: 

 
TP TN

Accuracy
TP TN FP FN




  
 (1) 

Precision represents the proportion of positive predictions that are actually correct 

(TP) and reflects the accuracy of the model positive predictions. It is calculated: 

 
TP

Precision
TP FP




 (2) 

Recall measures the percentage of actual anomalies correctly identified by the mod-

el, emphasizing its importance in scenarios where missing positives are costly, such as detect-

ing abnormal conditions in electrical panels. It is calculated: 

 
TP

Recall
TP FN




 (3) 

The F1 score, the harmonic mean of precision and recall, is useful for imbalanced 

datasets, ranging from 0 to 1, with higher values indicating better performance. It balances 

precision and recall, minimizing FN while ensuring correct positive predictions, and is calcu-

lated; 

  1 2
Precision Recall

F score
Precision Recall





 (4) 

The classification model performance, evaluated using accuracy, precision, recall, 

and F1 score, is detailed above. The following section presents and discusses experimental re-

sults, focusing on normal conditions as well as smoke-forming and pre-ignition conditions. 

Thermal runaway phases in LIB  

and heat release dynamics 

Understanding the thermal dynamics of 

LIB during fire incidents is critical for evaluat-

ing their thermal runaway behavior. Figure 1 

provides an illustrative graph of the heat release 

rate, HRR, vs. time during a fire [34].  

The x-axis represents time, showing the 

progression of the fire from its initiation until it 

is completely extinguished at the point labeled 

total time. The y-axis represents the heat release 

coefficient, indicating the amount of energy re-

leased during different fire stages. The fire 

stages presented in fig. 1 further divides the 

thermal behavior into additional regions (N, S1, S2, S3, and S4) to provide a comprehensive 

understanding [34]. The graphs underscore the importance of early detection mechanisms for 

LIB, particularly in the N and S1 regions, where thermal runaway can still be mitigated. These 

 

Figure 1. Different phases in the  
development of a fire 
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phases are critical for implementing predictive maintenance strategies and preventing cata-

strophic battery failure. 

Experiment design 

For this study, a specially designed 1 m³ metal cabin with an openable lid, as shown 

in fig. 2(a), was used to conduct combustion experiments. These experiments were carried out 

using 3.5 V batteries, as depicted in fig. 2(b). These batteries are identical to those used in ve-

hicles and are arranged sequentially. The experiments aimed to collect data to evaluate the 

operating conditions and safety of the batteries. 

(a)  (b)  

Figure 2. (a) Experiment cabinet and (b) 3.5 V battery 

Figure 2(a) shows the cabinet that specially designed to analyze the gases, temperature 

changes and safety risks generated during the experiment. Figure 2(b) shows the battery, has the 

same characteristics as the batteries used in vehicles and was used sequentially in experiments. 

The image is given to detail the physical appearance of the batteries used in the experiments. In 

this study, a plug-in hybrid electric vehicle battery with a prismatic structure, NMC 622 type, 25 

Ah capacity and 3.7 V nominal voltage was used. 

In the process, the gases that batteries can produce in their operating environment, 

temperature fluctuations, and general safety risks were identified, and analyses were conduct-

ed based on the measured data. The data obtained provided a critical foundation for assessing 

battery operating conditions, detecting potential hazards caused by failure or degradation in 

advance, and preventing undesirable events such as fires or explosions. During the experi-

ment, various sensors and devices were used to collect comprehensive data on potential haz-

ards and environmental conditions that may arise from the battery. The data obtained with the 

Arduino Mega microcontroller is: The MQ4 sensor measured the amount of methane gas 

formed during the experiment and its rate of change and monitored the battery's potential to 

emit methane gas. The MQ7 sensor detected CO gas, allowing dangerous situations such as 

fire or battery failure to be detected. The MQ9 sensor detected flammable gases and moni-

tored the amount and rate of change of explosive or flammable gases in the environment. The 

MQ135 sensor, which was used to assess air quality, assessed the safety of the environment 

by measuring CO2 density. In addition, the DHT22 sensor provided data to understand the ef-

fects of these conditions on battery safety by measuring the temperature and humidity of the 

environment. The data collected from the sensors listed above was recorded every 2 seconds 

and stored with a time stamp. In this way, the changes in the data over time were analyzed in 

detail. Additionally, temperature and humidity data outside the cabin were collected using an-

other DHT22 sensor using the Raspberry Pi 4 minicomputer. At the same time, surface tem-

perature data and thermal images of the battery used in the experiment were also recorded. 
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The images were obtained with the MLX90640 IR thermal imaging camera. This camera rec-

ords the temperature distribution both as numerical data in degrees Celsius and as thermal im-

ages, allowing detailed observation of temperature changes. The way the data was collected 

during the experiments is given in fig. 3. 

(a)  (b)  (c)  

Figure 3. (a), (b) computers and cabinet inside with sensors and thermal camera, and  
(c) normal condition battery and drilled battery 

Figure 3(a), shows the Raspberry Pi 4 minicomputer and screen (on top) and laptop 

computer equipment used during the experiment. Raspberry Pi 4 was used to process and dis-

play thermal images obtained by the MLX90640 IR thermal imaging camera. The thermal 

image data is clearly visible on the screen. The laptop on the bottom was used to process and 

record sensor data collected with the Arduino Mega microcontroller. This computer provides 

live monitoring and saves data of CH4, CO, temperature, humidity and time stamp provided 

by the sensors. Figure 4(b), shows the sensors such as MQ4, MQ7, MQ9, MQ135, and 

DHT22 are conveniently placed within the cabin to measure gases produced by the battery, 

temperature changes and ambient conditions. Figure 3(c), shows the normal condition battery 

and drilled battery that the experiment was carried out by drilling the battery. The battery on 

the right displays visible signs of damage, including burn marks and structural deformation, 

indicating the impact of high temperatures and gases generated during the experiment. This 

comparison highlights the effects of extreme conditions on battery integrity and is critical for 

understanding safety risks associated with battery failure or malfunction in real-world scenar-

ios. Table 2 shows the thermal images at different experiments. 

Table 2. The LIB temperature display with thermal imaging at different time zones 
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Table 2 presents eight different images showing the temperature distribution of the 

battery surface recorded by the thermal camera during the experiment. Each frame represents 

the temperature values measured at different time intervals during various experiments. The 

progression of the battery surface heating over time is observed. In total, in the experiments, 

1910 different data sets were collected. Each data line contains 11 different features. 

Experimental results 

In this study, a dataset consisting of 1909 samples was used. For each algorithm, 

models were created using 5-fold cross-validation. In tab. 3, the algorithms were tested on the 

dataset using the best-selected hyperparameters. In this process, 90% of the dataset (1719 

samples) was allocated for training and 10% (190 samples) for testing. Operations on the da-

taset and the application of ML models were performed using MATLAB R2023a academic 

software. The confusion matrices obtained for each algorithm are presented in fig. 4. 

 

 

Figure 4. Confusion matrices for training and test results of used algorithms; (a) coarse tree,  
(b) binary GLM-LR, (c) efficient linear SVM, and (d) GNB 

Figure 4 represents the performance of Coarse tree, Binary GLM-LR, Efficient line-

ar SVM, and GNB algorithms in the training and test stages with confusion matrices. In the 

analysis made with the training data, Coarse tree and Binary GLM-LR models achieved high 

accuracy rates by exhibiting the best performance in positive (S1) and negative (N) classes. 

While the efficient linear SVM model showed balanced success, GNB made more errors 

compared to the other models. In the test data, a slight decrease was observed in the perfor-

mance of all models compared to the training stage. However, Coarse tree and Binary GLM-

LR models provided the highest accuracy in the test stage, while efficient linear SVM again 

offered a balanced performance. The GNB, on the other hand, showed lower success com-

pared to the other models in both the training and test stages. In general, Coarse tree and Bina-

ry GLM-LR models stood out as the most successful algorithms. Table 3 presents the perfor-

mance metrics of the ML models used in ASD on the training data (training data) based on 

class (N and S1). 
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Table 3. Performance metrics for training data 

Model Class F1 Score Precision Recall Accuracy [%] 

Coarse tree N 0.9529 0.9159 0.9930 96.74 

Coarse tree S1 0.9751 0.9964 0.9547 96.74 

Binary GLM-LR N 0.9747 0.9807 0.9688 98.31 

Binary GLM-LR S1 0.9873 0.9904 0.9843 98.31 

Efficient linear SVM N 0.9644 0.9553 0.9737 97.61 

Efficient linear SVM S1 0.9821 0.9868 0.9774 97.61 

GNB N 0.8859 0.8609 0.9123 92.20 

GNB S1 0.9408 0.9552 0.9269 92.20 

 

As shown in tab. 3, Binary GLM-LR and efficient linear SVM demonstrated the best 

performance in both N and S1 classes. Coarse tree performed particularly well in the S1 class 

but showed slightly lower precision in the N class. On the other hand, GNB exhibited lower 

performance in both classes compared to the other models. Table 4 shows performance met-

rics for test results. 

Table 4. Performance metrics for test data 

Model Class F1 Score Precision Recall Accuracy (%) 

Coarse tree N 0.8859 0.8609 0.9123 92.20 

Coarse tree S1 0.9408 0.9552 0.9269 92.20 

Binary GLM-LR N 0.9683 0.9683 0.9683 97.89 

Binary GLM-LR S1 0.9843 0.9843 0.9843 97.89 

Efficient linear SVM N 0.96 0.9677 0.9524 97.37 

Efficient linear SVM S1 0.9804 0.9766 0.9843 97.37 

GNB N 0.8615 0.8358 0.8889 90.53 

GNB S1 0.9280 0.9431 0.9134 90.53 

 

As shown in tab. 4, Binary GLM-LR, and efficient linear SVM showed the best per-

formance in both N and S1 classes on the test data, with high F1 scores, precision, and recall 

values (≥ 96%). Coarse tree performed well in the S1 class but exhibited slightly lower met-

rics in the N class, particularly in precision. The GNB demonstrated the lowest performance 

among the models, especially in the N class.  

Finally, fig. 5 graphically shows the accuracy on both training and testing data. 

Figure 5(a) shows training data accuracy values and fig. 5(b) shows test data accuracy values 

used ML models in the study. Binary GLM-LR has the highest accuracy rate on both data sets 

and stands out as the most successful model. Efficient linear SVM showed a performance 

close to Binary GLM-LR, providing 97.61% accuracy on the training data and 97.37% accu-

racy on the test data, and became the second-best model. Coarse tree showed a moderate per-

formance compared to the Binary GLM-LR and Efficient linear SVM models. The GNB had 
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the lowest accuracy rate and was evaluated as the weakest model among all. As a result, the 

best performance was seen in Binary GLM-LR and Efficient linear SVM models, while GNB 

showed the lowest performance. 

 

Figure 5. Accuracy comparison for; (a) training and (b) test ML models 

Conclusions 

This study presents an ML-based approach to prevent fire risks in LNB of electric 

vehicles. The study examines the gas emission behaviors of NMC 622 prismatic batteries sub-

jected to mechanical impacts and demonstrates that CO and CO2 gases can be used as thermal 

runaway indicators. Real-scale experiments have provided critical data to detect potential 

hazards in advance. The obtained data were applied to Coarse tree, Binary GLM-LR, Efficient 

linear SVM, and GNB learning models. As a result of the training, Binary GLM-LR and Effi-

cient linear SVM models exhibited the highest accuracy rates and the best performance on 

both training and test data. In particular, Binary GLM-LR stood out as the most successful 

model by consistently providing the best results. In contrast, the GNB model showed relative-

ly low performance. These results show that ML models can be effectively used to develop 

early warning mechanisms and proactively prevent thermal runaway risks. 

In conclusion, the findings show that the integration of ML models into electric ve-

hicle battery management systems can make a significant contribution to the prevention of po-

tential thermal runaway events through early warning mechanisms. This approach can help 

prevent serious accidents such as fire and explosion by increasing battery reliability and pas-

senger safety. The study provides significant progress in the field of electric vehicle battery 

safety, both theoretically and practically. In addition, the integration of data collection tech-

niques such as gas emission models and thermal imaging allows continuous monitoring of 

battery safety status. Comparison of the performances of different ML models allowed the de-

termination of the most effective algorithms, and these findings paved the way for innovative 

technologies that will further improve battery safety by providing a basis for future research. 

Such innovative approaches contribute to the development of sustainable and safe electric ve-

hicle technologies. 
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