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An investigation into the computational analysis of magnetohydrodynamic 

(MHD) flow of a viscoelastic nanofluid (Walters' B' model) over an inclined 

stretching surface is being carried out in this study. The investigation takes 

into account numerous slip effects, thermal radiation, and chemical 

processes.  In order to generate the governing partial differential equations 

(PDEs), similarity transformations are utilized. These equations are then 

translated into nonlinear ordinary differential equations (ODEs).  Utilising 

the homotopy analysis method (HAM) is the means by which the numerical 

solution is produced.  For the purpose of illustrating the influence of various 

flow parameters on the effects of magnetic field, thermal radiation, 

viscoelasticity, chemical reaction rate, and slip effects on momentum, 

thermal, and solutal curves, a graphical display of the numerical 

examination is performed at the end of the process.  Significant affects of 

these parameters on the properties of fluid flow, heat and mass transfer are 

demonstrated by the findings, which have significance for applications in 

both the industrial and biological fields. 

Keywords :Viscoelastic Nanofluid, MHD, Inclined Stretching Sheet, 

Chemical Reaction, Multiple Slip Effects, Numerical Simulation, Thermal 

Radiation. 

1. Introduction 

Viscoelastic fluids are a distinctive type of non-Newtonian fluid that display both elasticity and 

viscosity, when exposed to stress or deformation. They combine the resistance to shear stress seen in 

fluids with the ability of solids to recover their original shape. Common examples include blood, 

honey, ketchup, polymer melts, bitumen, drilling fluids, and personal care products such as cosmetic 

creams and lotions, chemical processing and manufacturing, oil and gas exploration and production, 

Polymer manufacturing and processing, Aerospace engineering and manufacturing. Certain elastico-

viscous fluids cannot be accurately represented by Maxwell's or Oldroyd's constitutive relations. This 

is the case for many of these fluids.  A category that falls into this category is the Walters B′ fluid 

Walters [1].  The features of a Walters B′ viscoelastic fluid Walters are believed to be accurately 

exhibited by a mixture of poly methyl methacrylate and pyridine at a temperature of 25 degrees 

Celsius, with a polymer content of 30.5 grams per liter and a density of 0.98 grams per liter [2].  In 

addition to the production of contact lenses, spacecraft, airplanes, tires, belt conveyors, ropes, 

cushions, seats, foams, and plastic engineering equipment, polymers are also used in the production of 
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a wide variety of other products.  A significant number of these crucial and frequently utilized items 

are manufactured using the Walters B′ viscoelastic fluid serving as the base.  In a diverging channel 

for physiological fluid flow, Kumar et al. [3] investigated the impact of viscoelastic fluid and surface 

roughness on the flow of fluid.  An investigation into the influence of viscoelastic fluid in a porous 

media under an electric field within an asymmetric microchannel was carried out by Pandey et al. [4] 

not too long ago.  The significance of visco-elastic electrically conductive motion and materials that 

vary over time was investigated by Shao et al. [5], who found that these factors outweigh the 

gravitational impact on the surface of a capsule. 

Nanofluids are formed by suspending nanoparticles with typical diameters ranging from 1 to 100 

nm. [6] found that even a small concentration of nanoparticles (typically less than 5%), when 

uniformly dispersed and stably suspended in base fluids, can significantly improve the fluid's thermal 

conductivity and heat transfer coefficient. Nanotechnology has made enormous advances in 

applications over the last two decades, solidifying its position as a cornerstone of 21st-century science, 

technology, and biomechanics. It has numerous uses in a variety of industries, including solar energy 

collection, sophisticated nuclear systems, electronics, medical technology, biological materials, engine 

cooling, and heat exchangers. Initially, research on thin liquid film flow focused on fluids with some 

viscosity, which resulted in viscosity-based classifications that finally saturated the field. Non-

Newtonian fluids are studied under varying internal and external influences. Non-Newtonian fluid 

flow plays a crucial role not only in geophysical phenomena such as mud floods, and lava flows, but 

also in numerous industrial applications, including biomedical engineering, material processing, and 

the food and chemical industries. Fluids are classed as Newtonian or non-Newtonian based on their 

viscosity behaviour, according to Nabwey et al. [7] While Newtonian fluids have a constant viscosity 

proportional to shear rate, non-Newtonian fluids, the focus of this review, have variable viscosity that 

changes dynamically in response to shear rate changes.  

Magnetohydrodynamics (MHD) studies the behavior of electrically conductive fluids in the 

presence of a magnetic field, either externally applied or caused by the fluid's motion. Application 

areas for these flows are extremely diverse and include the casting of steel in industry, heat exchangers 

which is often called a steam generator in nuclear fusion reactors, bio plasma, medicine, and 

nanotechnology, to name a few. In a wide variety of industrial processes, electrically conductive fluids 

play a significant role. Notable examples of such fluids include liquid metals such as aluminum, 

mercury, and crucible steel. Diverse MHD events are produced because of the interaction of a flowing 

fluid with a magnetic field. These events can be utilized in a variety of different ways. 

Electromagnetic flow control is utilized in industrial processes for the purpose of stabilizing molten 

metals, managing free surfaces, and producing fine powders, semiconductors, aluminum, and high-

performance super alloys. The development of fusion reactors, which use high-intensity magnetic 

fields to control plasma, is driving much of the current interest in MHD research. 

Electromagnetohydrodynamic (EMHD) flows are effective for transporting low-conductivity fluids in 

microsystems. Viscoelastic nanofluid flows have numerous applications in the fields of biomedical 

engineering, energy systems, and materials science. These microfluidic devices provide precise fluid 

movement for a variety of applications, including enhancing the velocity of one fluid through 

interaction with another fluid, promoting efficient heat transfer, and allowing for regulated fluid 

mixing that can be controlled. Understanding these fluids' complex dynamics is critical for developing 

new medication delivery systems, electronic cooling devices, and heat exchangers. The roots of MHD 

are sometimes traced to the pioneering work of Hartmann [8] conducted the first liquid metal 

experiments in 1937. Julius Hartmann made additional contributions to the advancement of 

technology by attempting to design an electromagnetic conduction pump for the purpose of moving 

fluids that are electrically conductive. Following their findings, a few researchers looked into cases 

like the Couette flow of a conductive viscous fluid between two parallel plates under perpendicular 

magnetic field Agarwal et al. [9] & Lehnert [10] Hartmann’s research found that magnetic fields and 

induced currents greatly affect swiftness contours, resulting in boundary layers with high velocity 

gradients near the plates. The diverse range of electrically conductive fluids provides numerous 

options for the development of MHD applications. Nanofluids are one type of fluid that received a lot 

of interest in the second part of the twentieth century. Nayak et al.[11] studied MHD viscoelastic fluid 

flow in a porous material using Walters' B' fluid model, adding to the growing body of research in this 



area. Thermal radiation, commonly known as heat radiation, is the electromagnetic radiation released 

by an object or material as a function of its temperature. It is a type of energy transfer that occurs 

when a hotter body emits energy into its cooler surroundings. The author Singh et al.[12] examined the 

effects of heat radiation and other thermophysical parameters on fluid movement. Many research 

scholars have studied the importance of MHD and thermal radiation effects on nanofluids and non-

Newtonian fluids (see [13-16]). 

Chemical reactions take place when two components meet and produce a product in the 

presence of an aiding factor, such as a catalyst. These reactions are divided into two categories: 

reversible and irreversible. Irreversible reactions cannot be reversed, but reversible reactions can move 

forward and backward. Swarnalathamma et al.[17] investigated the effects of radiation absorption and 

chemical reactions on MHD free convective Casson fluid flow via an infinite, vertically inclined 

porous plate. Krishna et al. [18] studied the unsteady MHD third-grade fluid flow across a high-

temperature shrinking sheet embedded with silver nanoparticles and affected by nonlinear radiation. 

Popoola et al. [19] used numerical analysis to investigate the effect of chemical reactions on MHD 

viscoelastic fluid flow. Mahapatra et al. [20] investigated the impact of chemical reactions on free 

convection flow in a porous material near a vertical surface. Furthermore, Mohamed et al.[21] 

explored Walters'-B nanofluid mixed convection flow and thermal transfer around a circular cylinder 

in the presence of thermal radiation.  

The phenomenon of no-slip boundary conditions in fluid flow phenomena has been investigated 

by a number of researchers. The macroscopic slip property is shown by certain fluids, including liquid 

polymers, foams, and emulsions, among others. Both the temperature and the velocity of these fluids 

diverge from the surface when they are in close proximity to solid particles. There are a wide variety 

of applications for fluid flows that demonstrate high slip effects. These applications include fluid 

movement in inner body cavities as well as several industrial and engineering processes. According to 

Seid et al. [22], the optimal homotopy technique was utilized in order to study the influence that 

various slip circumstances have on MHD unsteady viscoelastic nanofluid flow across a sheet that is 

expanding vertically while radiation was present. Several slip effects were shown to be responsible for 

the expansion of boundary layers, according to their findings. Multiple slip effects are the subject of 

more research, which may be found in [23-26]. In the manufacturing business as well as in other 

technological applications, increasing the efficiency of heat transfer is a major goal. An increase in 

heat transmission not only makes it possible to produce industrial goods of a higher quality at a lower 

cost, but it also helps to reduce the amount of damage that can be caused by devices overheating. 

The employment of the homotopy analysis method (HAM), which was presented by Zhu and 

Granick [27], leads to the achievement of the objective of acquiring the required analytical response. 

With the assistance of this method, which has seen broad use, a number of distinct issues involving 

heat transfer and fluid dynamics have been resolved. Both HAM and an exponentially stretched 

surface were applied by researchers [28-30] in order to accomplish the goals of evaluating nanofluid 

flow and proposing analytical solutions. Furthermore, additional study [31-34] was conducted to 

investigate the nonlinear thermal radiation properties of polymeric materials. The HAM technique was 

utilized to analyze the results of this investigation. Ishak et al. [35] did research in the past to 

investigate the impact of heat and mass transfer in the flow of a viscoelastic nanofluid across a 

stretching sheet while the sheet was subjected to velocity slip conditions. The research was carried out 

in order to investigate the significance of these two factors. 

The studies that are now being conducted investigate the ways in which viscoelastic nanofluid flow is 

affected by magnetohydrodynamics, heat radiation, chemical reactions, and slip conditions. The 

homotopy analysis approach, also known as HAM, was utilized in order to derive numerical solutions 

for the nonlinear ODEs and boundary conditions that were produced as a result. Comparisons of 

fundamental physical characteristics are depicted through the use of graphical representations. This 

method is also utilized for the purpose of determining significant technical metrics, such as the 

Sherwood number, the Nusselt amount, and the skin friction coefficient. Magnetic fields, non-

Newtonian fluid dynamics, and heat transfer are all components that interact with one another, and the 



findings shed significant light on this relationship. The optimization of industrial processes and the 

improvement of engineering systems are both significantly impacted by these discoveries, which have 

significant ramifications. 

Research question 

i. How do thermal radiation and heat source influence the boundary layer flow and features of 

thermal transmission of visco-elastic nanofluids? 

ii. What is the impact of Brownian motions and thermophoresis’s on the flow, thermal, and 

concentration profiles of visco-elastic nanofluids in the presence of multiple slip effects? 

iv. In what ways can magnetohydrodynamics (MHD) enhance or reduce the efficiency of heat 

transfer in visco-elastic nanofluids? 

v. How can the HAM technique solver be utilized effectively to predict the implication of visco-

elastic fluid factors on thermal and flow distributions? 

vi. What is the role of Schmidt number and Prandtl number in optimizing heat transfer and flow 

dynamics in a visco-elastic nanofluid system? 

 

2. Formulation of the problem 

The fluid transport properties of an incompressible MHD viscoelastic nanofluid will be explored over 

a porous extended sheet that is inclined perpendicular to its vertical axis. These properties will be 

modified by chemical processes. By using boundary conditions that are convective, additionally 

assessed are heat generation and absorption. As shown in Fig. 1, the X- and Y-axes are parallel to the 

surface and aligned along the inclined surface. Stretching has been achieved by moving the wall with a 

velocity  ,along the x-axis. The MHD, thermal, as well as the concentration boundary layers 

are supposed to develop along the  y-axis, and grow along the  x-axis. We have Tw for temperature 

close to the surface and T∞ for temperature far from the surface, and Cw and C∞ for concentration, 

respectively. For the purpose of the flow analysis, the fluid is subjected to a normal-to-flow magnetic 

field with an intensity of B0.  Brownian motion characteristics are taken into account. Thermal 

radiation, chemical reactions, heat sources, and multi-slip effects are all discussed. 

 

Fig.1 Modelling of the flow geometry 

 

Within the bounds of the boundary layer approximations, the following equations regulate the 

conservation of mass, momentum, thermal energy, and nanoparticle concentration (see [35]): 
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where Stefan Boltzmann constant is  
 and  

 is the mean absorption coefficient. Moreover, we 

assume that the flow's internal temperature differential is adequately large so that  
4T  is represented as 

a linear function of thermal  As a result, by expanding 
4T in Taylor series about T

 and if we ignore 

terms of higher order, we get 
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Using Equations (6) and (7) the Equation (3) converts into: 
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where  is the similarity variable. 
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The essential quantities of interest are the skin-friction factor, local Nusselt number, and the 

local Sherwood number, that are represented as 
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The surface shear stress W  , surface heat flux wq  and surface mass flux wj  are represented 

by
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Using Eq. (9), we get 
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3.Solution methodology and Convergence of HAM 

HAM 

 

Figure 2. Diagrammatic representation of HAM process. 

 

It is demonstrated that the Homotopy Analysis Method (HAM), also known as the Homotopy 

Analysis Method, is an effective semi-analytical method by the fact that it is utilized in a variety of 

research projects to handle boundary layer flow issues. As an illustration, it has been successfully 

utilized to acquire semi-analytical solutions for the thermal convection boundary layer flow of 

incompressible Casson fluids. These solutions incorporate features such as suction/injection and heat 

sink effects, both of which are essential in polymer coating applications. In addition, the ability of 

HAM to handle non-linear boundary value problems has been demonstrated by the fact that it has been 

utilized to produce mathematical expressions for velocity, heat and mass transfer in boundary layer 

flows that involve thermal radiation in presence of multiple slip effects. The approach has also been 

utilized in the field of magnetohydrodynamics, which has shed light on the impact that parameters like 

magnetic and Prandtl numbers have on flow characteristics. Additionally, the BVPh2.0 program has 

the capability to ease the implementation of HAM, which enables the efficient computing of solutions 

in complicated boundary layer situations that involve nanofluids and  Casson fluids.  

Employing the HAM allowed us to derive the analytic solutions for Eqs. (10)–(12) with the 

prescribed boundary conditions (13), using selected initial guesses and linear operators for the 

functions f, θ, and ϕ. 



 
Fig. 2.  -curves for )0('and)0('),0('' f at 15th order approximations. 

 

Table 1. Convergence of HAM solution with various orders of approximations at 

1 1 2 30.1, 0.5, 60 , 0.1,Pr 1.4, 1.0,

0.3, 0.2, 0.2.
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Order )0(''f   ' 0
  '' 0

 
5 -1.020448 0.333042 0.578612 

10 -1.019805 0.317650 0.587336 

15 -1.019759 0.315833 0.588758 

20 -1.019757 0.315697 0.588903 

25 -1.019757 0.315721 0.588896 

30 -1.019757 0.315735 0.588888 

35 -1.019757 0.315738 0.588885 

40 -1.019757 0.315738 0.588885 

45 -1.019757 0.315738 0.588885 

 

4. Results and Discussion 

The graphs are intended to examine the impact of physical features on momentum, thermal, 

and solutal. This section emphasizes the graphical representation of the physical characteristics 

combined with flow processes.  A comparison with historical patterns was conducted to verify the 

accuracy of our endeavor, resulting in significant concordance, as illustrated in Table 2.  Unless 

otherwise mentioned in the related figures, we strictly stick to the values given in Table 1 so that the 

numerical results of this study are consistent. 

 

 

Fig. 4. Outlines of  'f  for k1. Fig. 5 Outlines of    for k1. 



  

Fig. 6. Outlines of    for k1. Fig. 7. Outlines of  'f  for M. 

  

 Fig. 8. Outlines of    for M Fig. 9. Outlines of    for M. 

 
 

      Fig. 10 Outlines of  'f  for 1  Fig. 11. Outlines of  'f  for  . 

 
 

Fig. 12. Outlines of    for R . Fig. 13. Outlines of    for  Q. 

  

   Fig. 14. Outlines of    for 2 . Fig. 15 Outlines of    for Nb. 



  

Fig. 16 Outlines of    for Nb. Fig. 17 Outlines of    for Nt. 

 
 

Fig. 18. Outlines of    for Nt. Fig. 19. Outlines of    for 3 . 

 
 

Fig. 20. Outlines of   
 
for  . Fig. 21. Outlines of Cfx  for k1  and M. 

 

 

Fig. 22 Outlines of Nux  for Nt  and 2 . Fig. 23 Outlines of Shx for 3  and  . 

 

The effects of the viscoelastic parameter k1 on the flow of the fluid and the temporal 

distribution of heat and mass are shown in Figures 4-6. The graph shows that as k1 gets greater, fluid 

motion gets worse close to the stretched sheet and better further away. Furthermore, heat transfer is 

reduced as the second-grade parameter is increased, since fluid movement is accelerated. 

Consequently, when viscoelastic effects intensify, the momentum boundary layer enlarges while the 

thermal and concentration boundary layers contract. Figures 7-9 demonstrate the influence of 



magnetic constraint M on the contours. Notably, f'(ζ) decreases as M  upsurges, whereas the opposite 

trend is observed for thermal and solutal contours. This phenomenon occurs because the Lorentz force, 

which hinders fluid motion, intensifies with increasing , resulting in a decline in transport rate. Upon 

applying the magnetic field to the flow field, the Lorentz force becomes significant, slowing down the 

fluid flow and increasing drag. Consequently, the fluid flow momentum declines as the momentum 

layer thickness upsurges. Figure 10 shows how the flow distribution is affected by the flow slip 

limitation 1 . It is evident from the analysis that the increase in the flow slip constraint 1 , 

representing the speed contour, decreases.  Snowballing the slip parameter clearly results in a 

diminishing swiftness. Figure 11 reveals that the momentum of the fluid declines as the inclination 

angle    upsurges. This reduction in velocity is attributed to the presence of Lorentz forces near the 

solid surface, which alter the flow pattern and consequently lead to a decline in fluid velocity. 

Figure 12 demonstrates that an increase in the radiation constraint R leads to a corresponding upsurge 

in the dimensionless temperature. This phenomenon occurs because enhanced thermal radiation results 

in a higher rate of heat absorption by the fluid particles, leading to increased thermal energy retention. 

Consequently, the local temperature distribution, or thermal contour, across the fluid exhibits a 

significant rise. Notably, this effect is particularly pronounced in high-temperature systems, where 

radiative heat transfer becomes the dominant mode of energy transmission. 

Figure 13exemplifies the remarkable impact of Q on θ(ζ). In the instance of air, an upsurge in the 

values improves θ. After declining at first, the thermal contour rises away from the wall.Figure 14 

demonstrates that the temperature declines as the thermal slip constraint 2  rises, resulting in a 

reduced physical width of the thermal boundary layer despite minimal heat transfer from the sheet to 

the fluid.The effect of the Brownian motion constraint  Nb on the thermal contour is depicted in Fig. 

15 The results indicate that as Nb increases, the distance between the thermal boundary layers 

declines. Furthermore, Fig. 16 illustrates the relationship between the concentration distribution and 

Nb, revealing that the concentration boundary layer thickness decreases with increasing Nb values. 

Notably, the graphical representation also shows that the thermal boundary layer thickness declines 

despite increasing Nb values, providing valuable insights into the system's behaviour. Figs. 17 and 18 

are dedicated to investigating the impact of thermophoresis Nt on thermal and solutal contours. Based 

on the available data, it can be inferred that increasing thermophoresis Nt values lead to a widening 

gap between the thermal and concentration boundary layers, indicating a growing distance between 

these boundaries. Figure 19 shows that the nanoparticle fraction slip constraint 3  has a comparable 

effect on the mass fraction field, mirroring its impact on the thermal field. This similarity arises from 

the fundamental hindrance to fluid motion caused by slip, leading to diminished molecular progress 

and, consequently, a decrease in the mass fraction field. 

 

  Figure 20 demonstrates the effect of the chemical reaction constraint   on the solutal contour 

   revealing that an upsurge in   leads to a declination   in the solutal contour.Figure 21 illustrates 

the variation of the local skin friction coefficient with respect to the visco elastic constraint 1k and the 

magnetic constraint M. Notably, it is observed that increasing values of 1k  and M  lead to a decrease in 

the local skin friction coefficient. Figure 22 displays that the Nusselt number decreases with increasing 

values of both the thermophoresis constraint Nt and the thermal slip constraint 2 . Fig. 23 displays 

that local Sherwood number varies with  and 3 , it is observed  that local Sherwood number is an 

increasing function of   and increases with an increases with 3 . 

Table 2 compares the calculated )0('  values to those from previous studies over various 

ranges. There is limited consistency between the previous results and the present ones. 

Table 2. Comparison of )0('  for different values of Pr  in the absence of remaining 

parameters 



Pr Ishak et al.[31] HAM 

0.72 0.46326 46.3255ⅹ10-2 

1.0 0.58198 58.1992ⅹ10-2 

3.0 1.16525 116.5213ⅹ10-2 

 

5. Conclusions 

We study non-Newtonian nanofluid flow over a elongating sheet with heat source/sink, 

thermophoresis, and Brownian motion. Using the Homotopy Analysis Method (HAM), we analyze the 

impact of controlling constraints, including magnetic field effects, on momentum, thermal, and solutal 

distributions, as well as skin friction, Nusselt number, and Sherwood number. The following 

conclusions can be drawn from this study are  

(i)When the viscoelastic constraint is improved, the thickness of the velocity  boundary layer as 

well as the momentumn decreases, where as, the solutal and thermal upsurges. 

 (ii)The distribution of flow momentum decreases as the slip of fluid on the stretched surface 

increases. 

(iii)A thinner thermal boundary layer is the outcome of an increase in the heat source constraint, 

which causes a drop in thermal. A fall in fluid thermal causes an increase in viscosity. 

(iv)The nanofluid's viscoelasticity reduces the local skin friction and Nusselt number while 

increasing the local Sherwood number. (v)The Brownian motion constraint declines on the thermal 

and nano particle concentration contours, whereas the thermophoresis constraint upsurges on thermal 

and nano particle concentration. 

(vi)The chemical reaction constraint declines on the nano particle concentration. 

 

 
Terminology: - 

 

Abbreviations 

 
SI units  

Abbreviations 

 
SI units 

 (Free stream) 1ms    (Inclination angle) radian (rad) 

wT (convective fluid 

temperature) 
k (kelvin) ( W )surface shear stress   Pascal (Pa). 

T
(ambient fluid 

thermal) 
k (kelvin) 

 (Thermal conductivity 

of fluid) 

1 1wm k   

 (Dynamic viscosity) 1 1kgm s   rq (radiative heat flux) 
2

wm


 

g (  Acceleration due to 

gravity) 

2ms  
TD (Thermophoresis 

diffusion factor) 

2 1m s  

 (Infinity viscosity) 
2nsm

 
 (Chemical reaction 

constraint) 

1ms  

u,v (Momentum 

components in ,x y  

directions) 

1ms  wj (surface mass flux)  2 1kgm s   

C ((fluid concentration) 
3molm

 f  (fluid density) 3kgm  

wC  (solutal level of fluid 

at surface) 

3molm  C
 (ambient solutal) 3molm  

T (fluid temperature) k  (kelvin) 
1k  (Viscoelastic 

constraint) 

2

nm


 

1 2 3, ,    (Slip factors) m  BD (Brownian diffusion 

factor) 

2 1m s  

MHD (Magneto hydro  wU (Stretching velocity)  



dynamics) 

Q (heat generation 

factor) 
 

Rex
 (Local Reynolds 

number) 
 

k 
(absorption 

coefficient) 
 

  (Concentration of a 

fluid with no dimension) 
 

  (Temperature of a 

fluid with no dimension) 
 

wq  (Surface heat flux)  

n (Characteristic 

function) 
   

 (Thermal diffusivity)  
R (Thermal radiation 

constraint) 
 

M (Magnetic field 

constraint) 
 xSh (Local Sherwood 

number) 
 

Nt (Thermophoresis 

constraint) 
 

F (stream function with 

no dimension) 
 

Nb  (Brownian motion 

constraint) 
 

'F ( swiftness with no 

dimension) 
 

Pr  (Prandtl number)  Sc (Schmidt Number)  

 (Stream function)  
 (Concentration of a 

fluid with no dimension) 
 

HAM (Homotopy 

analysis technique) 
 

`f (dimension less 

velocity) 
 

p ( mass density of  

nanoparticles) 
 

 
p

c ( Nanoparticles 

heat capacity) 
 

*  (Stefan -Boltzmann 

constant) 
 

Gc ( Solutal local 

Grashof number) 
 

* ( 1 to 7)iD i  (Random 

coefficients) 
 

 (A variable with no 

dimension) 
 

 
f

c (Heat capacity of 

the fluid 
 

 
f

c  (Specific heat at 

constant pressure) 
 

Gr (Local   Grashof 

number due to thermal) 
 

 

 
p

f

c

c





   

(Ratio  of Nanofluid 

Heat Capability  to the 

Base Fluid) 

 

 Subscripts   

f  (fluid)  w  (wall)  

a  (constant stretching 

rate) 
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