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Abstract: Current research efforts have yet to comprehensively compare the thermo-

mechanical performance disparities between layered and power-law graded graphene-

reinforced composites, particularly regarding structural optimization under operational 

constraints. To address this gap, this investigation establishes a model methodology for 

composite analysis, synergistically integrating the Halpin-Tsai micromechanical con-

stitutive modeling framework with Maxwell-Eucken multiphase homogenization prin-

ciples. A nonlinear finite element framework was established based on the simplified 

first-order shear deformation theory (S-FSDT), and the numerical solution of the bend-

ing response of the plate is obtained by Newton-Raphson iteration. The proposed mod-

els were validated against existing literature. A systematic study was conducted on the 

thermodynamic coupling properties of layered and power-law graded graphene distri-

butions with various pore types. Parametric comparisons showed that symmetric sur-

face-enriched distributions achieved optimal performance in all configurations. The 

power-law graded type demonstrated superior reinforcement efficacy over the layered 

design. This study reveals the synergy between pore distribution and graphene gradient 

design, offering theoretical support for optimizing lightweight high-stiffness compo-

sites. 

Keywords: Layered graphene; Power-law graded graphene; S-FSDT; Thermo-Me-
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1. Introduction 

Graphene has emerged as a transformative reinforcement in composites due to its 

exceptional mechanical and thermal properties. Its ultra-high mechanical properties [1] 

and excellent thermal conductivity [2] have enabled it to show great potential in high-

end fields such as lightweight thermal protection systems in aerospace, new energy au-

tomobile battery assemblies, flexible electronic devices, biomedical sensors, and other 

high-end fields. Compared to carbon nanotubes (CNTs), graphene platelets (GPLs) of-

fer better interfacial bonding and cost efficiency. Through functionally graded distribu-

tion (FGD), the spatial concentration of GPLs can be precisely tailored to optimize local 

material performance [3]. Current research primarily focuses on two distribution types: 

layered graphene-reinforced composites and power-law graded composites based on 

trigonometric functions and volume fractions. 

In research on layered graphene-reinforced composites, non-uniform gradient dis-

tributions have been shown to improve overall performance. Song et al. [4] demonstrate 



that the strategic dispersion of more square-shaped graphene platelets, composed of 

FG-X distribution, is the most effective method for enhancing the plate's natural fre-

quencies and significantly reducing dynamic deflections. Tao et al. [5] indicate that the 

FG-X configuration exhibits the optimal load-deflection response in the post-buckling 

of cylindrical and spherical shell plates made from layer graphene reinforced composite. 

Thai et al. [6] highlight the superior reinforcement efficacy of the FG-X distribution 

mode. At a fixed GPL mass fraction, the FG-X configuration attains the highest natural 

frequency. In the study of stress distribution, Jin et al. [7] analyzed four FG-CNTRC 

laminated plates with piezoelectric layers, revealing that in-plane stress varies linearly 

through the thickness under uniform distribution (UD) conditions but nonlinearly for 

functionally graded (FG-X, FG-O, FG-V) configurations. Van-Loi et al. [8] found that 

for the FG-X distribution pattern with 2% WGPL, the GPL-reinforced P-FGM composite 

plates exhibit a 32.43% increase in normalized critical buckling load and a 24.48% 

reduction in normalized central deflection. 

Research on power-law graded graphene reinforced composites has demonstrated 

that surface-enriched GPL distributions (e.g., GS-type) significantly enhance flexural 

stiffness and critical buckling loads. Theoretical analyses confirm that porosity distri-

bution critically modulates mechanical properties through localized density variations, 

driving research on GPL-porosity synergy. For example, Do et al. [10] demonstrated 

that FGA-type GPL distribution combined with P1-type porosity achieves superior ther-

mal buckling resistance. She et al. [11] systematically studied conical and cylindrical 

shells, showing that increased GPL content enhances resonance frequencies, amplifies 

nonlinear hardening behavior, and improves vibration resistance via GPL-A/Porosity-

Ix configurations. Liu et al. [12] reported that GS/GA-type GPL gradations optimize 

thermoelastic response, reducing thermal deformation. In piezoelectric-bonded porous 

functionally graded plates [14], 1.0 wt.% GPLs dispersion maximized natural fre-

quency enhancement. Chen et al. [17] found that the natural frequency of the symmet-

rically distributed pore-graphene combination is slightly different from that of the linear 

temperature field under the nonlinear temperature field, while the asymmetric combi-

nation shows a significant frequency change. Zhang et al. [16] quantified thermo-elec-

tro-mechanical coupling effects in porous GPL-reinforced plates, showing that GS-PS 

configurations enhance stiffness and sustain higher nonlinear frequencies. Tu et al. [17] 

revealed size-dependent nonlinear dynamics in GPL-reinforced microporous plates un-

der thermal gradients, achieving 35% amplitude reduction through optimized nanofiller 

geometry. Huang et al. Huang [18] et al. optimized rotating sandwich annular plates 

with functionally graded porous cores, demonstrating that surface-dense porosity and 

GPL enrichment significantly improve structural stiffness and natural frequencies. 

It is evident that the current research predominantly centers on the elastic behavior 

of materials, such as vibration and bending. However, systematic investigations into 

non-elastic behaviors—such as plastic deformation and fatigue crack propagation—are 

still lacking [3]. Current research in this field is predominantly confined to studies by 

Song et al. [20][21]. Current research predominantly examines either power-law graded 

or layered graphene distributions within composites, yet a systematic comparison be-

tween these two types is lacking. While much of the literature highlights the 



enhancement of thermomechanical properties through gradient distribution, there is a 

scarcity of comprehensive comparisons between these two types of composites. This 

limitation impedes the quantitative evaluation of gradient design optimization and the 

selection of appropriate graphene distribution types for engineering applications. This 

study addresses the gap by investigating the geometrically nonlinear responses of po-

rous plates reinforced with both distribution patterns. Based on S-FSDT, Halpin–Tsai 

model, and Maxwell–Eucken equation, numerical models are established and validated. 

Parametric studies reveal how porosity and graphene distribution affect material prop-

erties, thermal behavior, and bending performance. Results demonstrate that power-law 

graded graphene (GS) yields higher stiffness than layered functionally graded structures 

(FG-X), providing key insights for optimizing graphene reinforcement in engineering 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. Modeling of two distinct graphene types 

In this section, we construct two different graphene models. In 2.1 and 2.2, we 

construct pure graphene composite panels without pores, and in 2.3, we build two types 

of graphene-reinforced composite panels with pores, where mz  is the distance from 

the physical midplane to the geometric midplane. 

(a) Power-law graded graphene and three types of porosity distribution 

 

(b) Layered Graphene 

Fig.1. Two types of graphene and pore types 

 

2.1. Power-law graded graphene 

The power-law graded graphene composite plates of this model are shown in 

Fig.1(a), featuring characteristic dimensions( sa b h  ). Three distinct GPL dispersion 

modes were implemented through the plate's thickness domain GS(Symmetric nonlin-

ear distribution with mid-plane concentration), GA(Asymmetric gradient distribution 

towards the top surface), and GU(Uniform distribution). 

It is assumed that the three types of volume distribution functions for GPL in a 

purely graphene-reinforced plate can be expressed as[12]: 
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where 1S , 2S  and 3S  are volume peaks corresponding to different GPL volume dis-

tributions under no pore. These parameters can be determined using the relationship 

between wight fraction and volume fraction as the following equation.  
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where GPLW  denotes the wight fraction of graphene, m  and GPL are the densities of 

substrate matrix materials and graphene sheets. 

To obtain the effective elastic modulus of power-law graded graphene composites, 

we use the micromechanics of the Halpin-Tsai model. According to the mixing law, the 

density, Poisson's ratio, and thermal expansion coefficient of the final material can be 

expressed as[16]: 
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where 
mE , 

m  denote the modulus of elasticity and Poisson's ratio of the matrix, re-

spectively, while 
GPL
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GPL

L , 
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W , 
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L  are related to the average length 
GPLl ; av-

erage thickness GPLh  average width 
GPLw  of the GPL, calculated as follows 
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For the thermal conductivity in composites, firstly, using micromechanical mod-

eling, the thermal conductivity of GPL composites in the absence of holes is described 

by the following equations[14]. 
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where mk  denotes the thermal conductivity of the base material, and 
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where 
GPL GPLd l h= , kR  are the average interfacial thermal resistances between the 

matrix material and the GPL, and 
GPLk  is the thermal conductivity of the GPL. 

 

2.2. Layered Graphene 

The present model, as in Fig. 1(b), is a multilayer functional gradient graphene 

composite plate with thickness hs and length and width a and b, respectively. The plate 

has a total of NL layers, each with a thickness of hs/NL. It is assumed that the GPL is 

uniformly filled in the matrix of each layer, and the weight score of the GPL varies 

depending on the layer. Fig.1(a) shows four GPL distribution modes. 

The weight fraction i of layer 
( )

GPL

iW  GPL is expressed as follows [6]. 
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where the volume fraction of GPLs in layer i  is 
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where GPL  and m  are the densities of the GPLs and the matrix, respectively. 

The forms of material parameters, such as 
( )iE , 

(i) , 
(i) and ( )ik  are the same 

as those of power-law graphene. 

2.3. Material properties of plates after adding pores 

In this section, we model the material of plates with pore distributions added to 

the already graphene reinforced composite plates, with three types of pore distributions, 

as shown in Fig. 1(a), with distribution functions of 
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The material parameters of the porous graphene sheet reinforced composite, in-

cluding elastic modulus E ; density  and Poisson's ratio  ; can be expressed as fol-

lows: 
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where 
0e  is the average pore coefficient 0 max min1e E E= − . maxE  and minE  denote 

the effective maximum and minimum modulus of elasticity of the material, respectively, 

while in this section 
maxE and 

max  are the material parameters of the pure graphene 

reinforced composite plate. Poisson's ratio  is expressed as: 
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similarly 
max  is also the Poisson's ratio of a non-porous graphene reinforced compo-

site plate, where p  and 
me can be solved using a homogenization method based on 

the assumption of representative volume elements . 
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Meanwhile, the modulus of elasticity and density in Eq. (14) satisfy the following 

relationship, while the pore coefficient is required to be in the range of 0 to 0.9618 [14]: 
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Assuming that the total mass of the final enhanced plate plates with different po-

rosity distributions are equal, 
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The uniform distribution of porosity for the combined Eqs. (14), (16), and (18) 

can be expressed as 
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In addition, the presence of pores also affects the graphene volume fraction, and 

the equation for the relationship between its volume fraction and mass fraction is then 

as follows [12] 
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Similarly, pores can also influence the thermal conductivity, which can be deter-

mined using the Maxwell-Eucken equation[14], as shown below: 
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where ( )k z  is the thermal conductivity of the nonporous graphene reinforced compo-

site sheet and airk  is the thermal conductivity of air. 

Assuming that the temperature changes only along the thickness of the plate, the 

1D steady-state heat transfer equation [23] is: 
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Using the first kind of boundary conditions, the temperature distribution through 

the thickness direction is expressed as: 
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where uT  and lT  are the temperatures at z = hs /2 and z = -hs/2, respectively
 

3. Nonlinear finite element of plate 

3.1. Geometric equations 

The simplified first-order shear deformation theory (S-FSDT) effectively avoids 

shear locking compared to conventional FSDT, while achieving higher computational 

efficiency than higher-order theories (HSDT) due to its reduced degrees of freedom. 

This approach differs from the one-section shear theory in that, within the S-FSDT 

framework, deflection is articulated in terms of both bending deflection bw  and shear 

deflection sw , i.e. 0 b sw w w= + , In this formulation, the two angular variables in the 

first-order shear deformation are represented by the partial derivatives of the bending 

terms, i.e., ,x b y bw x w y = −  = −  . 

The displacement of any point in the plate is: 
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The above equation is converted to the matrix 0uu = Z u .  00 0 b su v w w


=u , 

and uZ is given by the following equation: 
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By employing the Von-Karman nonlinear theory [22], the strain-displacement re-

lationship of the plate can be formulated as follows: 
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The plate's constitutive relations are formulated as [24] 

 =σ Qε  (32) 

where σ  is the stress vector; Q  denotes the matrix of elastic constants, which can 

be expressed as[32] 



 

11 12

21 22

66

55

44

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Q Q

Q Q

Q

Q

Q

 
 
 
 =
 
 
  

Q  (33) 

For a perforated multilayer functional gradient graphene composite sheet, Eq. (33)

then represents the matrix of elastic constants for each layer, and the elements in 
( )iQ  

for layer i are as follows 
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3.2. Nonlinear finite element equations 

In this study, a four-node rectangular planar stress cell is utilized to address the 

problem. The displacement of any point within the plate domain can be represented as 
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where 
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at the same time 
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3.3. Nonlinear governing equations 

This part establishes the nonlinear governing equations of the plate. According to 

the principle of virtual displacement, the total energy change of the plate can be derived 

from the following equation [28]: 
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where , extU W  denotes potential energy and external work respectively, they can be ex-

pressed as [22] respectively 
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where u   denotes displacement; usf  , ucf   and ubf   denote face, point, and body 

loads respectively. Finally, Eq. (26) and Eq. (32) are brought into Eq. (41), Eq. (24) 

is brought into Eq. (42), the element is assembled, and the geometric nonlinear equa-

tion is[12] 

 ( )uu G u ui+  = −K K d F F  (43) 

where the expressions for uuK , GK , uF  and utF  in Eq. (43) are given in the Ap-

pendix . 

 

4. Model Validation 

The Newton-Raphson method[9] was employed to solve the governing equations 

for both layered and power-law graded graphene-reinforced panels. The accuracy of the 

nonlinear numerical approach was validated through comparisons with established lit-

erature benchmarks. The plates are simply supported, and all material parameters are 

provided in Table 1. 

Table 1. Parameters of substrate materials and graphene materials 

Material parame-

ters 

GPL Aluminum Zirconia Epoxy 

E (GPa) 1010 70 151 3 

ν 0.186 0.3 0.3 0.34 

ρ (kg/m3) 1062.5 2707 3000 1200 

α(10-6/K) 5 23 10 60 

k (W/mK) 2000 204 2.09 0.2 

Rk (10-9/Km2/W) — — — 10 

 

4.1. Temperature distribution 

To ensure the accuracy of the temperature distribution among graphene-reinforced 

plates, we first compare and validate the temperature distributions in FGM (functionally 

graded material plates), several types of GPLs(WGPL = 1.0 wt%), and porous materials, 

and under different temperature fields. We examine the temperature distribution of a 

plate with dimensions of 0.2×0.2×0.01 m³. Both the top and bottom temperatures of the 



plate are provided in the figure. Fig. 2(a) presents the dimensionless through-thickness 

temperature distribution of an FGM plate, and Fig. 2(b) illustrates the temperature dis-

tribution of a porous GPLs-reinforced plate. The results demonstrate a close alignment 

with those reported by Reddy [29] and Liu et al. [12].  

 

Fig. 2. Thickness temperature profiles of (a) FGM plates and (b) porous graphene 

platelets (GPL) reinforced epoxy composites. 

 

4.2. Material distribution verification 

In this section, we have simultaneously verified the elastic modulus distribution 

of layered graphene reinforced non-porous plates in the along-thickness direction, and 

also verified the thermal conductivities of plates with different pore and GPLs distribu-

tion patterns and non-porous GPL reinforced composite plates in the along-thickness 

direction. Fig.3 and Fig.4 are the same as the results of Thai et al. [5] and Liu et al. [12]. 

 

Fig. 3. Effects of four graphene distribution modes on Young's modulus of 

GPLs/Epoxy composites at NL = 10. 



 
Fig. 4. Thermal conductivity through the thickness direction of (a) porous GPLs rein-

forced composite plates and (b) non-porous GPLs reinforced composite plates. 

 

4.3. Nonlinear static bending verification 

In this section, we investigate the nonlinear static bending response of a pure lay-

ered graphene reinforced plate under a uniform load of 500 kPa. We examine the con-

nection between the number of layers, denoted as NL, and the percentage variation in 

plate deflection (wc/wm) in Fig. 5, where wc and wm denote the central deflections of the 

plates with GPL(WGPL=1.0 wt%) reinforcement and epoxy plate. Our computed results 

exhibit excellent agreement with those reported in [31], and it can also be seen that the 

deflection of the plate becomes stable with the increasing number of layers, so the num-

ber of layers we chose 25. 

 

Fig. 5. The connection between the NL and the percentage change of plate deflection. 

 

5. Comparative analysis 

5.1. Comparative analysis of material parameters 

Young’s modulus, a key indicator of stiffness, is compared across two types of 

graphene-reinforced composite plates. Based on conclusions from Section 4.3, a layer 

count of NL = 25 is selected for the nonporous epoxy-based plates to ensure deflection 

stability. The plate dimensions are specified as a = b = 0.2 m and hs = 0.01 m with the 

graphene platelets defined as wGPL = 1.5 μm, hGPL = 1.5 nm, and lGPL = 2.5 μm. Unless 

otherwise stated, all computational parameters default to the values mentioned above. 

Numerical results indicate that increasing the number of layers enhances the spa-

tial continuity of FG-O/X distributions around the midplane. The elastic modulus shows 



a symmetric, linear gradient across the thickness. A higher number of layers moderately 

raises the peak Young’s modulus relative to NL = 10. In the FG-X pattern, the top and 

bottom layers possess the highest graphene content and modulus, while the middle ap-

proaches zero. Conversely, FG-O shows maximum modulus and concentration in the 

central layer. FG-A exhibits a linear increase in modulus from bottom to top, consistent 

with extreme values in FG-X/O modes. 

From Fig. (6), it can be seen that the peak graphene volume fraction of power-law 

graded graphene reinforced material is greater, and also from Eq. (3), the Young's mod-

ulus E  and a positively correlated, so the maximum Young's modulus of the power-

law graphene reinforced composite is larger than the layered graphene reinforced com-

posite. 

 
Fig. 6. Young's modulus distribution along the thickness of two graphene-reinforced 

composite plates. 

 

Accurate thermal conductivity computation is essential for temperature field anal-

ysis. Using consistent parameters, this study examines temperature distributions in lay-

ered graphene-reinforced composites across four configurations: one non-porous base-

line and three characteristic porosity patterns. As shown in Fig. 7(d), the thermal con-

ductivity profile of the non-porous case closely resembles the Young's modulus distri-

bution in Fig. 6(b). 

Figs. 7(a)–7(c) present thermal conductivity variations under different porosity 

configurations and GPL dispersions. Fig. 7(c) shows a consistent decline in thermal 

conductivity with increasing porosity. Meanwhile, Figs. 7(a) and 7(b) demonstrate that 

thermal behavior is jointly influenced by GPL arrangement and porosity, aligning with 

power-law graded materials. Notably, the FG-O pattern shows marked thermal reduc-

tion with added porosity, as central graphene enrichment is offset by pore concentra-

tion—such combinations should be avoided in design. 



 

Fig. 7. Thermal conductivity distribution along the thickness direction of multilayer 

functional gradient graphene reinforced composite sheets. 

5.2. Comparative analysis of temperature field distribution 

Under top and bottom surface temperatures of 500 K and 300 K, comparative anal-

ysis reveals distinct thermal behaviors in plates with different graphene distributions. 

As shown in Fig. 8, non-uniform GPL dispersions (1.0 wt%) induce nonlinear temper-

ature profiles consistent with power-law gradients. GS shows smoother variation near 

edges than FG-X; GA changes more gradually top-side but faster bottom-side compared 

to FG-A, while GU and UD perform identically. These differences result from higher 

surface conductivity in power-law graded materials versus central conduction in lay-

ered composites. 

 



Fig. 8. Temperature distribution of two types of nonporous graphene reinforced com-

posite plates. 

 

5.3. Comparative analysis of static bending 

In this section, we compare and analyze the geometric nonlinear static bending 

responses under mechanical loads of a layered graphene reinforced composite plate  

and a power-law graded graphene composite platelet. Applying a uniform transverse 

load of q0 = -1×103 kPa to the epoxy matrix substrate. Fig. 9 compares linear and non-

linear load-deflection responses for porous and non-porous graphene configurations. 

Among layered composites, FG-X shows the smallest deflection, indicating optimal 

reinforcement. However, Table 2 reveals that in lightweight plates, GS distribution min-

imizes central deflection more effectively than FG-X, especially under porous condi-

tions, aligning with Section 5.1. Thus, combining PS and GS is advised for high-

strength, lightweight designs. UD and GU distributions exhibit similar effects. 

 

Fig .9. Centerline deflections (solid line is non-linear, dashed line is linear) of differ-

ent graphene types plates subjected to fixed mechanical loads. 

 

Table 2. Center deflection (mm) of plates with different pores and different gra-

phene distributions 

Graphene 

distribution 

type 

Pore distribution type 

PS PA PU e0 = 0 

Power-law graphene 

GS -3.6103 -3.7967 -3.8130 -3.3314 

GA -6.6457 -6.8365 -6.7956 -6.1306 

GU -5.2450 -5.4760 -5.5015 -4.8354 

Layered graphene 

FG-X -4.0681 -4.3182 -4.3491 -3.8154 

FG-O -7.0230 -7.1384 -7.1383 -6.4756 

FG-A -6.0771 -6.2374 -6.2673 -5.6178 

UD -5.2372 -5.4680 -5.4935 -4.8762 

 

We also investigated the variation of the center deflection of the nonporous gra-

phene-reinforced composite plate as the load was sequentially increased to 1,000 kPa 

after five steps. Fig. 10 shows the center deflection curves under different graphene 



types, which also proves that the reinforcement of GS is better under the current seven 

graphene types. 

 

 
Fig. 10. Deflection change for different graphene distribution types under progressive 

loading (opaque is nonlinear, transparent is linear) 

 

Fig. 11 provides a detailed comparison of the nonlinear static bending behavior of 

two types of graphene, illustrating the deflection as the graphene volume fraction in-

creases under a constant mechanical load. From the comparison between Figs. 11(a) 

and 11(d), it is evident that the incorporation of graphene significantly enhances the 

stiffness of all plate types. However, introducing pores results in a slight reduction in 

stiffness, although the stiffness remains higher than that of the initial plate. Furthermore, 

among the various graphene distributions, the FG-O type exhibits the lowest plate stiff-

ness, whereas the GS type demonstrates the highest, indicating the most effective en-

hancement. 



 

Fig. 11. Comparison of deflection with increasing graphene volume fraction for two 

types of graphene at a fixed load. 

 

6.Conclusion 

This study analyzes the through-thickness thermal conductivity of two graphene-

reinforced materials with porosity using S-FSDT and the Maxwell–Eucken model. 

Nonlinear finite element analysis evaluates static bending, central deflection under in-

cremental loading, and stress distribution. Key conclusions are derived from comparing 

material and mechanical properties across multiple scenarios. 

1)Theoretical derivations show that power-law graded materials provide superior 

enhancement in Young’s modulus across all distribution types. 

2）With introduced porosity, the thermal conductivity behavior of FG-A, FG-X, 

and UD cases resembles that of functional gradient graphene sheet reinforced materials. 

3）For lightweight plate applications, the PS-GS combination offers the highest 

stiffness, followed by PS and FG-X.  
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Appendix: 

Table 3. Graphene types 

GPL 

distribution 

type 

Symmetric 

 

Asymmetric 

 

Uniform 

 

Correspond-

ing litera-

ture 

Power-law 

graded 

graphene 

Pattern A Pattern B、C Pattern D [9] 

GPL – A、GPL - B ~ GPL - C [11]  

GS GA GU [12][14] 

FGA FGB FGC [17] 

Pattern O、X ~ Pattern U [18] 

Pattern A Pattern B Pattern C [15]  

Layered 

graphene 

FG-X、O FG-V UD [25] 

X、O-GPLRC ~ U-GPLRC [26] 

~ ~ Uniform [27] 

In Eq. (43), 

T duu u c u


= K B H B  (44) 

 ( ) ( )
T

ˆ dg g

G cI I


= K B H ε B  (45) 

 ,u us uc ub ui uu= + + =F F F F F F  (46) 

where 

 T

u L NL c s s2 , d
h

z= + = B B B H H QH  (47) 

 d , , d ,us us uc uc ub ub V
 

=  = = F Nf F Nf F Nf  (48) 

 ˆd ,uu u c




= F B H ε  (49) 


