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The core concept revolves around the applications and mechanisms of thin film 
flow. Thin films are widespread, and understanding their behavior is crucial due 
to their extensive range of practical applications in engineering and industries. 
In this study 2-D thin film flow of Sisko fluid on an unsteady stretching sheet in 
the presence of a uniform magnetic field MHD is analyzed. The fluid moves with 
the stretching of the lower plate. Due to the applied magnetic field of strength Bo, 
the fluid is assumed to be electrically conducting. The governing equations of the 
flow of Sisko fluid are in the form of PDE which are converted to the ODE by the 
use of self-similar transformation with a non-dimensional unsteadiness factor, St. 
The finite element method (FEM) along with 4th order Runge Kutta method 
(RKM-4) have been utilized to find the solution of the modeled equations. Com-
parison between homotopy analysis method (HAM), FEM and 4th order RKM 
numerical procedure are shown numerically. The effect of different physical pa-
rameters on the flow profiles is discussed with a physical explanation in result 
and discussion section through graphs and tables. The velocity profile enhanced 
with the higher values of Sisko fluid parameter whereas decline with magnetic 
factor.  
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Introduction 

The study of thin film flow has considerable attention owing to its widespread utili-

zation across various engineering and technological domains in recent times. Thin film flow 

phenomena are evident in numerous fields ranging from specific instances such as air-flow in 

human lungs to lubrication challenges in engineering, which arguably constitutes one of the 

broadest areas of application. A fascinating interaction between the fields of theology, struc-

tural mechanics, and fluid mechanics is the investigation of practical applications of liquid 

film flow. One of its essential uses is covering wire and fiber. Researchers must prioritize the 

development of studies on the effects of liquid film on surface stretching in light of these po-

tential uses. Extending the study of liquid film flow to non-Newtonian fluids builds on earlier 

work on viscous flow. The initial person to consider the flow of a thick fluid across a linearly 

expanding surface was Crane [1]. The heat transmission and viscoelastic fluid-flow on an ex-

panding surface have been investigated by Dandapat and Gupta [2]. The initial researcher to 

examine the time-dependent stretching of finite liquid films was Wang [3]. Ushah and Sri-

dharan [4] have tackled a similar issue and expanded it to a study conducted on a horizontal 

sheet using a liquid film fluid and heat transfer analysis. Lutera et al. [5] studied the exother-

mic reaction under the MHD effect over a porous surface. 

To find a solution and talk about parameters, Liu and Andersson [6] utilized numeri-

cal methods in their study. The effect of internal heat generation in thin-film flows on a time-

dependent stretching sheet was studied by Aziz et al. [7]. Kumar et al. [8] studied the MHD 

flow over a vertical plate, considering Soret and Dufour effect. Tawade et al. [9] recently in-

vestigated thin liquid flow past an unstable enlarging sheet with thermal radioactivity, in the 

incidence of MHD influence. There are numerous examples of thin-film flow of non-

Newtonian fluids in nature. Consequently, it has grown into one of the most ubiquitous natu-

ral elements utilized mostly in engineering, technology, and industrial applications. Abas 

et al. [10] used the Casson model to studied the heat transfer properties over a stretching sur-

face. Using the power law model, Andersson et al. [11] was the first to study the thin film 

flow of non-Newtonian fluids on an unsteady extending sheet. The investigation by Baithalu 

et al. [12] provides an in-depth analysis of magneto micro polar hybrid nanofluid-flow over 

an elongating surface, emphasizing the crucial roles of shear rate and couple stresses. Khan 

et al. [13] probed the liquid film flow of the nanofluid of Williamson under the influence of 

temperature-dependent viscosity over an unsteady stretching sheet. Andersona et al. [14] dis-

cussed the heat transfer phenomena in thin film flow over an unsteady stretching surface. 

Chen [15, 16] extend this experiment of [14] with including the power law model. The solu-

tion is obtained analytically and discussed about the effect of thin film by using power law 

model. While heat and viscous dissipation in MHD thin-film Oldroyd-B fluid across oscillat-

ing vertical belts is studied by Ullah et al. [17]. Abolbashari et al. [18] investigated the identi-

cal fluid using nanoparticles to generate entropy. Using Buongiorno's concept, Qasim et al. 
[19] recently investigated a fluid-thin layer on an unstable extending surface. Sisko fluid is the 

major subclass of non-Newtonian fluids. Asif et al. [20] investigated Sisko fluid in the exist-

ence of heat transmission viscous dissipation consequences and conflicting buoyancy. Khan 

et al. [21] deliberated Sisko steady fluid-flow with heat transmission in the annular pipe. 

Baithalu and Mishara [22] present a detailed approach that combines RSM with ANOVA to 

accurately determine the optimal shear rate. 

Khan and Shahzad [23] examined the boundary-layer flow of a Sisko fluid above an 

enlarging surface. Panda et al. [24] used RK-4 method to study the consequences of the Darcy- 
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Forchheimer flow over a porous extended surface. Nadeem et al. [25] numerically scrutinized 

Maxwell fluid across an extending surface in the existence of nanoparticles with MHD. The 

complexity of mathematical problems in engineering and technology makes an exact solution 

highly difficult. Analytical and numerical approaches solve such problems. The analytical 

methods required small assumption of parameters, initial guess to handle the non-linear prob-

lem [26-29] with fast convergence, where the numerical methods [30-33] are equally used to 

handle the non-linear problems. In terms of computing efficiency, numerical techniques out-

weigh analytical techniques. It is possible to obtain fast and precise estimates using numerical 

methods. These approaches offer flexibility in solving practical issues that cannot be made 

simpler by making a few assumptions [34-36]. Examining the flow of Sisko-fluids, a type of 

liquid film, over a stretched surface while a magnetic field is present is the primary objective 

of this study.  

In light of the cited literature, there is less study about the thin film MHD flow over 

an extended surface. Therefore, this paper presents a detailed study of thin film flow behavior 

for Sisko fluid over a time-dependent extended surface under the influence of a constant mag-

netic field. The fluid-flow is considered in the x and y planes and the time-dependent govern-

ing equations for Sisko fluid are reduced to ODE using similarity transformations, which in-

corporate the non-dimensional unsteadiness parameter. The FEM and RKM-4 recognized for 

its effectiveness and time-saving capabilities are used to solve the model problem. Basic 

equations  

The leading equations of continuity and heat are stated as: 

 div 0V   (1) 

 1

d 1
div ,  

d 2

V
p S

t
    J B  (2) 

The term S is defined for Sisko fluid as [37, 38]:  

  
1

2
1 1 2 1

1
 

2

n

S A c c tr

 
  
 
 

  (3) 

where 

 1 (grad ) (grad )TA V V   (4)  

where c1, c2 and n are the material constants which are defined differently for dissimilar flu-

ids. The last term of eq. (2) i.e. J × B is known as Lorentz force. Here the current density is 

J = σ(E + V × B) and magnetic field strength is denoted by B. Where σ used for electrical 

conductivity and E = 0 represent electric field. The velocity and stress profiles for 2-D flow 

are given as: 

      1 22 2 1 21 1, , ,0   ,, ,V u u Sx x x x S x x     (5) 

where u1 and u2 along the co-ordinates axes i.e. x1 and x2 represent the velocity components. 

Using eq. (5) in eqs. (1) and (2), we have: 

 1 2

1 2

0
u u

x x

 
 

 
 (6) 
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 (8) 

In eqs. (7) and (8) if a = 0 and b = 0 then the fluid change to power law and Newto-

nian fluids respectively. Introduce the dimensionless variable as [38]: 

 
* * * * *1 1

2

2
1 2 1 2

2 1
1 ,      ,      ,           and     

u x p
u u x x p

U U L L

u

U

x


      (9) 

Using eqs (9), eqs. (6) and (7) are written as: 
* * * 2 * 2 *
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The dimensionless factors ε1 and ε1 are defined as: 

 

1

1 2and

n
a b

U

LU LU L

 
 


 

   
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 (12) 

The following equations are transformed into their dimensional form using the 

boundary-layer approximations: 
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1 1 1 1 1 1
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u u p u u u
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x x x x x xx


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 1

2

0
p

x


 


 (14) 

Mathematical description of problem 

The Sisko fluid electric conductivity and 

time-dependent liquid film flow are taken into 

account while the surface is being spread.  

The co-ordinate axes are designated in 

such a way that the x1-axis is the direction of 

the flow while the x2-axis is normal to the sheet 

correspondingly as shown schematically in 

fig. 1. 

The surface of the fluid is stretched where 

two forces having oppositive directions and the 

same magnitude are acting along the x1-axis and maintain the origin stagnant. The sheet is 

stretched I in x1-axis with velocity: 

      
1

1 1, 1wU x t cx t


   (15)  

where c and χ are constants greater than zero. The x2-axis is perpendicular to it. The time-

dependent term, St, is the local Reynold number, which relies on the surface velocity Uw(x1, t) 
initially the slit is at rest with the origin and after some time it is stretched along x1-axis by an 

 

Figure 1. The physical configuration of the 

modelled problem 
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external force at the rate of c(1 – χt)–1. A magnetic field of variable type is perpendicular to 

the sheet and defined as: 

  
1/2

0( ) 1B t B t


   (16)        

 The leading flow equations along with boundary conditions are [38-40]: 

 1 2

1 2

0
u u

x x

 
 

 
 (17) 
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
 
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      
 (18) 

The associated boundary conditions are: 

 

1 2 2

1
2 2

1

, 0, at 0

d
0, , at 

d

wu U u x

u h
u x h

x t

  


  



 (19) 

were u1 and u2 denote the components of velocity, the density is ρ and B(t) strength of the 

magnetic field. 

Similarity variables 

Introducing the dimensionless and similarity variables are f and η, respectively, for 

subsequent transformation as [40]: 

  
 

0.50.50.5

1 2 2

11
( , , ) , , ( )

(1 )

tt c
f x x t x h t

c t c

 
  

  

   
       

     
 (20)  

where ψ(x1, x2, t) specify the stream function, h(t) specify the thin film thickness and ν(= μ/ρ) 

the kinematics viscosity. 

    
1/2

1
1 2

2 1

,
1 1

cx c
u f x f

x t x t

  
 

 
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        

      
 (21) 

Applying the similarity variables of eq. (7) into eqs. (1)-(6) the transformed non-li-

near differential equation as: 

    
1

0
2

nSt
f f f St M f f n f f


 

 
             

 
 (22) 

The transformed boundary constraints are: 

 (0) ( ) 0, '(0) 1, ( )
2

S
f f f f


      (23) 
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The film thickness: 

 

1/2

( )
1

b
h t

t


 

 
  

  
 

which gives: 
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1d

d 2
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t






 
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 (24) 

The physical non-dimensionalless constraints are, the unsteadiness factor is  

St (= β/c), the Sisko fluid factor is ε [= a/(ρν)], the stretching factor is:  

 

1
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b cx
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and the magnetic factor is:  
2
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=
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B
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b


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 
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Solution procedure 

The FEM is a potent approach for tackling non-linear differential equations, appli-

cable across various engineering domains including fluid mechanics, biomathematics, phys-

ics, and channel processes.  

Consider a non-linear ODE [41]: 

    
3

3

d
, , , ,

d

f
g f f f s  


    (25) 

with boundary conditions: 

      , ,a a bf a f f a f f b f     (26) 

where 
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is non-linear function. Using the Galerkin FEM for eq. (25), we have: 

      
3

3

d
, , , , d 0

d

f
w g f f f s


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where w(η) is the weight function and δ is the domain of the problem. From eq. (28), we have: 

      
1 1

d
d d

d

M M

e e

f
w g w 

 

     
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where ξn is the compoenent of unit outward normal of the boundary. 
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The function f at any point is approximated by: 
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where Mh represents the number of nodes, fl(χ) are the nodal unkown value of f and sl(η) are 

the shape function defined as: 
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    lw s   (32) 

using eq. (29) and eq. (32), we have: 
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The non-linear term can be calculated as: 
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where   
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is the initial guess. Equation (33) results in a system of non-linear algebraic equations. By 

solving these system of equations, we obtain the unkown nodal values as a function of χ. 

Once the nodal values are obtain then the solution is obtain for the entire domain. 

Results and discussion 

This section aims to examine how different physical parameters influence the veloci-

ty f(η) distributions. The FEM solution is compared with numerical results 4th order RK 

method for accuracy. Figure 2 spectacles the effect of unsteady constraint St in the presence 

of different values of the of power index n (= 0, 1, 2) on f(η). When the snowballing St the f(η) 

profile climbs. A higher power index value results in a more pronounced acceleration of the 

velocity distribution, thus it is evident that changing the power index has the same effect as 

changing the unstable parameter. It is observed that the solution is dependent on the unsteadi-

ness parameter with a solution range. As St enhanced the motion of the nanofluid is escalates. 

Similarly altering the power index has a comparable effect on the unsteadiness parameter 

where an increase in the power index leads to a rise in the velocity distribution. Figure 3 

demonstrates the impact of film thickness β for changing n (= 0, 1, 2). In coating processes, β 

is a critical factor, as it significantly impacts performance. Physically, β is directly influenced 

by the velocity of the fluid. It is noted that the f(η) profile drops with ascending values of β. 

Actually fluid film offers resistance to the flow with the higher values of β and goes to slow 

down f(η). The reason is that the film thickness and viscosity are directly related to each other.  
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Figure 2. Effect of St on f(η) for n = 0, 1, 2, 3, when β = 0.8, ξ = 0.3, M = 1.0, and ε = 0.2 

Figure 3. Influence of β on f(η) for n = 0, 1, 2, 3, when St = 0.4, ε = 0.2, ξ = 0.3, and M = 1.0 

Figure 4 describe the impact of the magnetic factor, M, on f(η) for various numbers 

of n (= 0, 1, 2). When M escalates the f(η) surpresses on the sheet surface. The application of a 

magnetic field to a fluid causes it to exhibit these phenomena because it generates a resistive 

force known as the Lorentz force. This force act perpendicular to the fluid motion. Hence cre-

ates an obstacle in flow direction. Thus this force causes the fluid's velocity to slow down. 

Figure 5 demonstrates that the impact of the stretching factor   for changing values of n(1, 2, 

3) on f(η) profile. The f(η) profile increase for growing value of ε when n(= 1) when values

changes from 1 to 3, the effect of extending parameter ε also changed and for n = 3 the 

stretching factor has oppositive impact on f(η) that is f(η) diminishes. For n = 0 then ε will be-

come zero. The effect of ε for different values of n on f(η) is revealed in fig. 6. The higher 

values of ε enhance fluid motion, but as the power index increases n = 3 this effect undergoes 

a change resulting in a reduction in the f(η) field. Moreover, the velocity profile escalates as 

the value of ε climbs, since the lower plate directly influences the fluid velocity. Physically 

when ε > 0,  the surface acceleration escalates, when ε < 0 the surface decelerates when ε = 0 

the surface exhibits random motion.  

Figure 4. Influence of M on f(η) for n = 0, 1, 2, 3, when St = 0.4, ε = 0.2, and ξ = 0.3  
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Figure 5. Influence of ξ on f(η), when β = 0.8, ε = 0.2, St = 0.4, and M = 1.0 

Figure 6. Influence of ε on f(η), when β = 0.4, St = 0.4, M = 1.0, and ξ = 0.2 

Validation of results 

The modeled equations, along boundary conditions, are solved numerically and ana-

lytically. A comparison among HAM, RKM-4, and FEM solutions are presented both graph-

ically and numerically for velocity. Figure 7 shows an excellent agreement between RKM-4 

and the numerical method. Additionally, tabs. 1-3 confirm the accuracy of the results obtained  

Table 1. The association between HAM, FEM, and RK method for f(η) in case of 
n = 0, when β = ε = 1, St = M = 0.1, and ξ = 0.8 

η RK method order 4 FEM solution HAM [30] Absolute error 

0  0.00000 0.0000000  0.00000 0.0000000 

0.1 0.096682 0.096682 0.096797 –1.5·10–04

0.2 0.187429 0.187429 0.187874 –4.46·10–04

0.3 0.273169 0.273169 0.274142 –9.73·10–04

0.4 0.354701 0.354701 0.356381 –1.68·10–03

0.5 0.432726 0.432726 0.4352750 –2.549·10–03

0.6 0.507882 0.507882 0.511437 –3.555·10–03

0.7 0.589755 0.580755 0.585433 –4.678·10–03

0.8 0.651911 0.651911 0.657798 5.887·10–03 

0.9 0.721905 0.721905 0.729058 –7.153·10–03

1 0.791305 0.791305 0.799754 –8.449·10–03
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Table 2. The association between HAM, FEM, and RK numerical techniques for f(η) in case of 
n = 1, when β = ε = 1, St = M = 0.1, and ξ = 0.8 

  RK Method FEM solution HAM [30] Absolute error 

0 0.00000 0.00000 0.0000  0.0000000 

0.1 0.096941 0.096941 0.096797 –2.15462·10–04

0.2 0.192135 0.192135 0.187875 –1.52485·10–04

0.3 0.273169 0.273169 0.274142 –1.25478·10–04

0.4 0.354701 0.354701 0.356381 –3.214568·10–04

0.5 0.432726 0.432726 0.435275 –1.95483·10–04

0.6 0.507882 0.507882 0.511437 –5.21002·10–04

0.7 0.580755 0.580755 0.585433 –1.8523·10–03

0.8 0.651911 0.651911 0.657798 1.0215·10–03 

0.9 0.721905 0.721905 0.729058 –1.8526·10–03

1 0.791305 0.791305 0.799754 –1.98752·10–03

Table 3. Comparison of solution of f(η) in case of n = 2, when β = ε = 1, St = M = 0.1, and ξ = 0.8 

η RK Method FEM solution HAM [30] Absolute error 

0 1.00000 1.00000 1.00000 0.000000 

0.1 1.04865 1.04865 1.05256 3.9·10–03 

0.2 1.09068 1.09068 1.09617 5.5·10–03 

0.3  1.12653  1.12653 1.13199 5.5·10–03 

0.4 1.15656 1.15656 1.161 4.4·10–03 

0.5 1.18115 1.18115 1.18401 2.9·10–03 

0.6 1.20063 1.20063 1.20172 1.1·10–03 

0.7 1.21532 1.21532 1.21472 6.0·10–04 

0.8 1.2255 1.2255 1.2235 2.0·10–03 

0.9 1.23144 1.23144 1.22851 2.9·10–03 

1.0 1.23337 1.23337 1.2301 3.8·10–03 
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Figure 7. Comparison graphs when ξ = 0.8, β = 1, ε = 1, h = –0.6, St = 0.1, M = 0.1 

from FEM with RK Method of order 4 along with HAM results. From the comparison it is 

clear that the FEM results are very close to the RK method of order which confirms the accu-

racy and validity of the method. The effect of M, ξ, β, and St on Cf are given in tab. 4. It is ob-

served that growing values of M, ξ, and β lessening Cf while mounting St intensify the skin 

friction as given in tab. 4. The higher magnetic field generates the Lorentz force which is re-

sponsible for the declination in the velocity of the fluid. As a result, the skin friction of the 

fluid improved. 

Table 4. The Cf for dissimilar values of M, k, β, and S 

M ξ β St 
f″(0) 
n = 0 

f″(0) 
n = 1 

f″(0) 
n = 2 

f″(0) 
n = 3 

0.1 0.5 1.0 1.5 2.6702 2.6702 3.1102 3.3302 

0.5 1.9476 2.6472 2.9988 2.9488 

1.0 1.7420 2.4421 2.6728 2.6428 

1.5 0.1 2.1299 2.3291 3.4399 4.3399 

0.5 2.3215 2.3223 3.4115 4.3215 

1.0 2.2087 2.2001 3.2087 4.2687 

1.5 1.0 2.6921 2.6957 4.6992 5.6422 

1.0 2.1453 2.1453 4.5556 5.4456 

1.0 2.3986 2.1986 3.8871 4.8911 

1.0 0.1 2.1273 2.1272 3.0173 4.1273 

0.5 2.3592 2.3392 3.3472 4.3572 

1.0 2.5048 2.5048 4.5765 5.1048 

1.5 2.9120 3.0020 5.1982 5.9122 

Conclusions 

This section contains the main findings of different physical parameters on the 2-D 

thin film flow of Sisko fluid on an unsteady stretching sheet in the presence of a uniform 

magnetic field MHD. The fluid is assumed to be electrically conducting. The governing equa-
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tions of the flow of Sisko fluid are in the form of PDE which are converted to the ODE by the 

use of self-similar transformation with a non-dimensional unsteadiness factor. The modeled 

equations have been solved through FEM and numerical methods. The impact of the embed-

ded parameter is visually and analytically examined. The key remarks are: 

 The velocity field declined with higher magnetic parameter, while an increasing behav-

iour is noted for the Sisko and  parameters.

 The validation of the solution obtained via FEM has been confirmed using numerical

methods.

 A higher power index value results in a more pronounced acceleration of the velocity dis-

tribution, thus it's evident that changing the power index has the same effect as changing

the unstable parameter.

 The higher values of enhance fluid motion, but as the power index increases  this effect

reverse.

 The higher values of unsteady constraint in the presence of different values of the power

index escalate velocity profile.

 Higher values of n provide a greater range in velocity between the centerline and the

boundary, whereas lower values of n result in a more uniform velocity profile.

 Sisko fluid flow is dampened by the magnetic field, which lowers velocities and modifies

velocity profiles. As the intensity of the magnetic field rises, these effects become more

noticeable.
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