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The primary aim of this study is to establish new inequalities involving the Rie-
mann-Liouville fractional integrals for different classes of functions in two varia-
bles. As a foundational step, we establish two identities concerning the Riemann-
-Liouville fractional integrals for higher-order partial derivatives of functions.
Subsequently, several fractional Ostrowski-type inequalities for bounded func-
tions of two variables are derived. Besides the main results, various special cases
derived from the current findings are presented, and the links between these find-
ings and earlier results are explained.
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Introduction

In recent decades, integral inequalities have emerged as powerful tools in various
branches of mathematical analysis, with wide-ranging applications in numerical integration, ap-
proximation theory, and differential equations. These inequalities not only offer valuable esti-
mates but also provide insight into the behavior of functions under integration. Among the no-
table contributions in this area, the result established by Ostrowski [1] has garnered considera-
ble attention due to its utility in quantifying the deviation of a function from its integral mean.

Owing to its effectiveness in providing sharp bounds for the deviation of a function
from its integral mean, the Ostrowski inequality has become a central topic of investigation in
classical and modern analysis. Dragomir and Wang [2, 3] established Ostrowski-type inequal-
ities for functions whose first derivatives belong to various Lebesgue spaces. An Ostrowski-
type inequality for functions of two variables, along with its applications in numerical analy-
sis, was also established by Barnett and Dragomir in [4]. In a subsequent contribution, Dra-
gomir et al. [5] derived generalized Ostrowski-type inequalities for multivariable functions
whose partial derivatives are integrable in the sense of the L,-norm.

Motivated by the need to extend classical inequalities to broader function classes,
some of the earliest and most influential results concerning Ostrowski-type inequalities for
functions with bounded higher-order derivatives were established in [6, 7], laying the founda-
tion for subsequent developments in this direction. Subsequently, in [8], some integral ine-
qualities added to the literature by using similar function types. Moreover, a number of Os-
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trowski-type results have been developed in [9, 10] for functions whose derivatives of any or-
der are either Ly-integrable or bounded, thereby extending the classical framework to a broad-
er class of differentiable functions. In addition to deriving inequalities for functions with
higher-order derivatives, some authors [11-13] have also explored their natural applications in
estimating integral values, often formulating quadrature rules that emerge as a natural conse-
quences of such inequalities.The double integral inequalities established for functions pos-
sessing higher-order partial derivatives constitute the foundation of the present study, and the
fundamental studies on this topic can be found in references [14-16].

Another significant topic addressed in this article is the theory of Riemann-Liouville
fractional integrals. It is essential to review the definitions of Riemann-Liouville fractional in-
tegrals.

Definition 1. [17] Assume that y € Li[o1, 02] and a > 0. The left-sided Riemann-Li-
ouville fractional integral of order « is defined by:

Jo v (Q) = Ma )J(g ) Yy ()de, >0

while the right-sided Riemann-Liouville fractlonal integral is given by:

18w =—~ j(r O (e, ¢ <oy

I'(a)
where I'(«) denotes the classical Euler gamma functlon These operators reduce to the stand-
ard integral when « = 1, and serve as the foundation for various fractional analogues of classi-
cal integral inequalities.

Additionally, the definitions of Riemann-Liouville fractional integrals for functions
with two independent variables have also been introduced, providing a natural extension of
the classical one-variable case to a bivariate setting.

Definition 2. [18] Let w € Li([o1, 2] X [p1, p2]). The Riemann-Liouville fractional in-
tegrals:

a,p a,p a,B a,p
oo+ JO'erz J -pt and J627’p27
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and

1 O, P,

a,f - - T— ali-_ gf1 T T [oX
1LavE=ror s é[ £ (=) M- Nw(re)dedr, <oy, 9<d

where I'(-) denotes the classical Euler gamma function.

A substantial body of literature has been dedicated to the study of Riemann-Li-
ouville fractional integrals, reflecting their foundational role in the theory of fractional calcu-
lus. Among these, the monographs [17, 19] stand out as fundamental references offering a
comprehensive treatment of the subject. Moreover, a significant number of research articles
have been devoted to the investigation of various integral inequalities associated with Rie-
mann-Liouville fractional integrals, highlighting their broad applicability and theoretical im-
portance. It is worth emphasizing that one of the pioneering contributions to Hermite-Ha-
damard type inequalities involving Riemann-Liouville fractional integrals was made by Sari-
kaya et al. [20]. Sarkaya [18] also provided Hermite-Hadamard type inequalities including the
fractional integrals defined for functions of two variables, particularly in the framework of co-
ordinated convexity. In addition, Dragomir derived Ostrowski-type inequalities for different
classes of functions, utilizing identities involving the sum of the right- and left-sided Rie-
mann-Liouville integrals [21-23]. Subsequently, the Montgomery identity involving Rie-
mann-Liouville fractional integrals, along with the associated Ostrowski-type inequalities,
was presented by Agli¢ and Aljinovi¢ [24]. In addition to these foundational works, the refer-
ences [25-30], on Ostrowski-type results involving fractional integrals of functions of one var-
iable are the works that motivated us to write this article. It is also important to highlight the
inequalities involving Riemann-Liouville fractional integrals of functions of two variables.
For instance. fractional integral inequalities of Ostrowski type for functions with two inde-
pendent variables are developed by Latif and Hussain [31]. Another significant contribution to
the literature is the recent work by Sarkaya [32], who established fractional integral inequali-
ties based on functions of two variables. Erden et al. [33, 34] also presented Ostrowski-type
results including double fractional integrals for various classes of functions of two variables.
In a recent study Erden et al. [35] related to the topic of this paper, provided new fractional
integral inequalities for different classes of mappings, including functions whose higher-order
partial derivatives are of bounded variation.

This section is devoted to the analysis of recent fractional integral inequalities that
can be found using functions with higher order partial derivatives, in the light of the afore-
mentioned works. In the second section, two novel double integral identities involving the
definition of Riemann-Liouville fractional integrals of functions with higher-order partial de-
rivatives will be established. In the subsequent section, two fundamental fractional Ostrowski-
type inequalities are derived for bounded functions of two variables. In the final section, new
double integral inequalities are established for functions whose higher-order partial deriva-
tives are supposed to be in the L1 space.

Some identities for double integrals

In this section, we present the fundamental identities that are essential for deriving
the main results. Since the integrals involving higher-order partial derivatives are challenging
to compute and express explicitly, we introduce some notations to present the forthcoming
identities more clearly and concisely:
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By integration by parts and elementary analysis operations will be used to establish
identities involving fractional integrals of functions of two variables. So, identities including
Riemann-Liouville fraction integrals for functions of two variables whose higher order partial
derivatives are continuous are provided as follows.

Lemma 1. Suppose that y: [o1, 62] X [p1, p2] =:A = R? — R is an absolutely continu-
ous function such that the partial derivatives [0y (u, v)]/(u*6v)) exists and are continuous on
Afork=0,1,2,...,n,j=0,1,2,..., mwith n, me N*. Then, for any (£, $) € A one has:

O, P rgan+m+2
C(n+a)l(m+p3) - 5 s ou™ Loyt

=3, (v: <, 9)+ S (w; &, %n,m) =S, (v; 4, % n,m)+

+S3(w; & nm) - R (v; 4, nm)+F, (w; &, %n,m) (11)

where Q({ 7, 9, ¢) are defined by:

(¢-1) (:9—g)m+ﬂ_l, 0,<t<¢ and p <¢g<9

Q<17 9,5) = (C—T)nm:l(g—g)mﬁ:l, o,<r<¢ and 9<¢<p, 12)
(T—éy)nm 1(19—g)m+ﬂ1, {<r<o, and p <¢c< 9
(f—§)n+a71(§—v9)m+ﬁfl, {<r<o, and 9<¢<p,

were the expressions Ji(w; § ), Fi(w; & % n, m), Fa2(w; & % n, m), Si(y; & % n,m), Sa(w; & 9;
n, m), and S3(w; £ 9; n, m) are also as given in egs. (1), (3), (4), (6)-(8), respectively.

Proof. In the main integral stated in the Lemma, the four integrals that arise when
the definition of the kernel Q(¢; =, 9, ¢) is written must be calculated. The desired identity (11)
can be obtained by employing fundamental properties of integrals and the method of integra-
tion by parts.

In what follows, we introduce a new integral identity based on different versions of
the Riemann-Liouville fractional integrals in two variables.
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Lemma 2. Suppose that y: [o1, 2] X [p1, p2] =:A < R? — R is an absolutely continu-
ous function such that the partial derivatives [0*"y(u, v)]/(0u*oV)) exists and are continuous on
Afork=0,1,2,...,n,j=0,1,2,..., mwithn, me N". Then, for any (, 9) € A one has:

o, P, T ¢ AN+mM+2
L [ Jas) A P
L(n+a)T'(m+p3) o zy ou

=3, (v;$,9)+S,(v; <. % nm)+ S5 (w;4, 9 n,m)—
R (w; &, $nm)+F, (v: <, 9n,m) (13)
where Q(z, ¢) is defined by:
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mﬂl
/02§+

B ) ( ;m+ﬂ 1
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and the expressions were the expressions Ji(y; ¢ 9), Fa(y; & & n, m), Fi(y; ¢ 9; n, m),
Sily; & % n,m), and Ss(y; & 9; n, m) are as defined in egs. (2), (4), (3), (9), and (10), respec-
treely: Proof. If the procedures used in the proof of the Lemma 2 are applied by following

the same sequence and considering the kernel Q(z, ¢) instead of the kernel Q({ z, 4, ¢), the de-
sired result (14) is obtained.

Double integral inequalities for bounded functions

This section is devoted to the development of recent double integral inequalitie in-
volving the Riemann-Liouville fractional integral definitions for two-variable functions whose
partial derivatives of any order are bounded.

Theorem 2. Suppose that all the assumptions of Lemma 1 hold. If the partial deriva-
tive of order n + m + 2 of y is bounded, i.e.:

an+m+21//(u,v)

(n+m+2)
4 aun+lavm+l

= sup

| <o
0 (U,V)E(o’l,az)x(pl,pz)

then, for any (£ 9) € A, one has the inequalities:
91 (vi6, 9 +a (v gnm) =, (i, ginm) +

65 (Vi ginm) =y (W3S, gnm) +y (3¢ Sinm) <
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where the expressions Ji(y; & 9), Fi(y; & 9; n, m), F>(w; & 9, n, m), Si(y; & 3 n, m), Sao(y; G
9; n, m), and S3(w; £ 9; n, m) are also as given in egs. (1), (3), (4), (6)-(8), respectively.

Proof. If the definition of the kernel Q({ 7, 9, ¢) is used after taking the absolute val-
ue of both sides of the identity (11), the required inequality (14) is obtained.

Remark 1. With n = m = 0 and the same assumption of Teorem 2, the sum symbols
disappear and 0 is substituted instead of n and m in the remaining expressions, one possesses
the inequality which was proved Erden et al. [34].

In the following, we examine the results derived from the application of the second
identity (13).

Theorem 3. Suppose that all the assumptions of Lemma 2 hold. If the partial deriva-
tive of order n + m + 2 of y is bounded, i.e.:
an+m+2l//(U,V)

(n+m+2)
l// au n+lavm+1

= sup

| .
*© (U,V)E(O'I,O'Z)x(pl,pz)

then, for any (£ J) € A, one has the inequalities:
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1
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LO



Erden S., et al.: Fractional Inequalities Involving Double Integrals of ...
THERMAL SCIENCE: Year 2025, Vol. 29, No. 4B, pp. 3013-3022 3021

where Zi(w; § 9; n, m) is defined as in eq. (15). Here, the expressions J2(w; £ 9), F2(y; & & n,
m), Fa(y; § % n, m), Sa(y; & & n, m), and Ss(; £ &; n, m) are also as defined in egs. (2), (4),
(5), (9), and (10), respectively.

Proof. If the process followed in the proof of Theorem 2 are applied in the same or-
der by considering the definition of the kernel Q(z, ¢) after taking the absolute value of both
sides of eq. (13), the required result (16) is attained.

Remark 2. If n = m = 0 is chosen specifically under the conditions of the Theorem 3,
since the sum symbols vanished, one has the inequality which was proved Erden et al. [34].
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