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The present research paper will demonstrate the variational principle and peri-
odic wave solutions of the elastic rod equation. First, we will illustrate the gener-
alized variational principle in two examples. Secondly, we consider a fractal non- 
-linear elastic rod equation with an unsmooth boundary. Based on two-scale 
fractal theory and the semi-inverse method, we successfully establish the fractal 
variational principle for the non-linear elastic rod equation. This is helpful for 
studying symmetry, finding conserved quantities, and revealing possible traveling 
solution structures of the equation. Finally, we investigate periodic wave solu-
tions of the non-linear elastic rod equation. 
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Introduction  

Non-linear PDE are the gold standard for describing complex phenomena in the real 

world. They are used to model everything from the vibration of an atom to the big bang. Peo-

ple are fascinated by how PDE can be analyzed and solved, and they believe that finding the 

exact solutions is extremely difficult, if not impossible. 

The exact solutions, especially the solitary wave solutions of the PDE, can be found 

using various powerful methods, including the homotopy perturbation method [1-3], the var-

iational iteration method [4-6], the integral transform method [7-10], Taylor series method 

[11-13], and the exp-function method [14-16]. Each of these methods has its own set of ad-

vantages and disadvantages. The Taylor series method is simple, but its low convergence hin-

ders its wide applications. The exp-function method can lead to exact solutions, but its com-

plex calculation makes it inaccessible to those who are not familiar with some mathematical 

software.  

There is no doubt that variational methods [17-23] offer significant advantages over 

other approximate analytical methods. They can help us to study the symmetries and reveal 

the possible conserved quantities for complex models. They play a key role in the numerical 

and analytical analysis of PDE, and the solutions obtained are the best among all possible trial 

functions. They can be used for the discussed problems from a global perspective and provide 

physical insight into the nature of the solutions. This paper demonstrates the efficacy of the 

two-scale fractal theory [24, 25] and the semi-inverse method [26] in establishing the general-
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ized variational principle. The fractal variational principle is successfully established for the 

elastic rod equation, and soliton wave solutions are obtained via the Ritz-like method. 

Problem statement 

Consider the general non-linear wave equation of longitudinal oscillation of non-

linear elastic rod with lateral inertia is [27]: 
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where s , J , 2
0 / , ,c E   E, and   are the cross-section area of the rod, the polar moment of 

inertia, the square of the linear elastic longitudinal wave velocity, Poisson ratio, the Young’s 

modulus, and the density of the rod, respectively. While na is the material constant, n  is a 

positive integer. For the soft non-linear materials such as rubbers and polymers, 0.na  For 

the hard non-linear materials, 0,na  for example, majority of the metals. 

For the sake of convenience, denoting that 2
0a c , 

2
0nb na c  and 

2 /c J s , then 

we obtain the equation: 

 1 0n
tt xx x xx xxttu au bu u cu     (2) 

where n is a positive integer, the parameters , ,a b c R  and 0abc   are arbitrary constant re-

al numbers. 

Variational principle: method and examples  

in fractal space  

Variational principle is the theoretical bases for many kinds of variational methods, 

and the core problem is to seek variational formulations. In this section, fractal variational 

principles are established for the Sharma-Tasso-Olver equation [28] and the parametric cou-

pled KdV system [29] based on the two-scale fractal theory and semi-inverse method.  

Variational principle for  

Sharma-Tasso-Olver equation 

Consider the Sharma-Tasso-Olver equation [28]: 

 2 23 3 3 0t xx xxx x xu uu u u u u      (3) 

In the fractal space, eq. (3) can be modified: 
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where / ,u t   /u x   are He’s fractal derivatives defined as [30, 31]: 
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The following chain rules hold: 

 
2

2x x x  

  


  
 (7) 

 
3

3x x x x   

   


   
 (8) 

In the fractal space, all variables depend upon the scales used for observation and the 

fractal dimensions of the discontinuous boundary. Now, we use the two-scale transforms in 

the fractal time and spatial, respectively [32, 33]: 

 T t  (9) 

 X x  (10) 

where ,x t  are for the small scale and ,X T  for large scale, ,  are the two-scale dimensions 

[34]. Applying eqs. (9) and (10) to eq. (4), we have: 

 2 23 3 3 0T XX XXX X Xu uu u u u u      (11) 

We rewrite eq. (11) in conservation forms: 

 3( 3 ) 0T X XX Xu uu u u      (12) 

According to eq. (12), we can introduce a special function defined: 

 33T X XXuu u u      (13) 

 X u    (14) 

Our aim to structure a variational formulation for eq. (11): 

 ( , ) d dJ u L X T    (15) 

where L is a trial-Lagrange function. 

According to the semi-inverse method, we suppose the trial-Lagrange function with 

the following form: 

 3( 3 )T X XX XL u uu u u F        (16) 

here Fis an unknown function of u , and/or  , and/or their derivatives. 

Taking a variation on eq. (16) with respect to ψ, yields: 

 
3(3 ) 0T X XX X

F
u uu u u


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where /F   is called the variational derivative, which takes the following form: 
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Adding both sides of eq. (17) and eq. (12), we have: 

 0
F


  (19) 

Making a variation on eq. (16) with respect to u, yields: 
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where /F u   is the variational derivative, it can be written: 
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 (21) 

In the view of eqs. (13) and (14), we have: 

23 3T X X XXX X

F
u u

u


   


       

 3 3 3(3 ) 3 3 2X XX X XXuu u u uu u u u         (22) 

From eq. (22), F can be identified: 

 41

2
F u   (23) 

Finally, the following Lagrange function can be obtained: 

 3 41
( 3 )

2
T X XX XL u uu u u u        (24) 

Then we get the variational formulation for eq. (11): 

 
3 41

( , ) ( 3 ) d d
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 

         (25) 

Proof. The Euler-Lagrange equations of eq. (25) are: 

  3( 3 ) 0T X XX Xu uu u u          (26) 

 2 33 3 2 0T X X XXX Xu u u         (27) 

In view of the constraint condition given by eq. (14), it is easy to prove that eqs. (26) 

and (27) are equivalent to eqs. (12) and (13), respectively. 

In the fractal space ( , )X T 
, the variational formulation can be written: 
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which is subject to eq. (4). 

Variational principle for the parametric  

coupled KdV system 

Consider the parametric coupled KdV system [29]: 

 0t x xxx xu uu u vv         (29) 

 0t x x xxxv u v v u v         (30) 

where λ is a real parameter and u, v are rapidly decreasing real valued functions depending on 

the temporal and spatial variables and respectively. When eqs. (29) and (30) with unsmooth 

boundaries, the fractal derivative will be adopted to describe the model: 
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where / ,u t   /u x   are defined as eqs. (5) and (6). 

By using the two-scale transforms: 

 T t  (33) 

 X x  (34) 

Equations (29) and (30) become: 

 0T X XXX Xu uu u vv     (35) 

 0T X X XXXv u v v u v     (36) 

We rewrite eqs. (35) and (36) in conservation forms: 
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 (37) 

 ( ) 0T XX Xv uv v    (38) 

According to eq. (37), we can introduce a special function ψ defined as: 

 2 21 1

2 2
T XXu u v     (39) 

 X u    (40) 

similarly, from eq. (38), we can introduce another special function Φ defined as: 
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 T XXuv v    (41) 

 X v    (42) 

Our aim is to establish some variational formulation whose stationary conditions sat-

isfy for eqs. (35), (41), and (42), or eqs. (36), (39), and (40). To this end, we will apply the 

semi-inverse method to construct a trial functional: 

 ( , , ) d dJ u v L X T        (43) 

where L is a trial-Lagrange function defined: 

 ( )T XX XL v uv v F      (44) 

Here F is an unknown function of u, v and/or  , and/or their derivatives. 

Taking a variation on eq. (44) with respect to u and v, yields: 

  0X

F
v

u





   (45) 

 0T X XXX

F
u

v


  


     (46) 

where /F u   takes the following form: 
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In view of eqs. (39) and (40), we set: 
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From eqs. (48) and (49), F can be determined: 

 2 31 1

2 6
F u v v   (50) 

Finally, we obtain the following Lagrange function: 
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( , , ) ( ) d d
2 6
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Proof. The Euler-Lagrange equations of eq. (51) are: 

 ( ) 0T XX Xv uv v     (52) 

 0Xv uv    (53) 
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 2 21 1
0

2 2
T X XXXu u v             (54) 

Equation (52) is equivalent to eq. (38), eq. (53) is equivalent to eq. (40), in view of 

the constraint eq. (40), eq. (54) becomes eq. (39).  

Solutions of model problem 

Variational theory [35-40] is a powerful mathematical tool to finding a suitable soli-

tary waves, however a non-smooth boundary [41] will greatly affect the solitary wave proper-

ties, so the smooth space (x, t) should be replace by a fractal space (xβ, tα), where β and α are-

fractal dimensions in space and time, respectively. In the fractal space, eq. (2) can be modi-

fied: 

 
2 2 1 2 4

2 2 2 2 2
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nu u u u u
a b c

t x x x t x     
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 (55) 

where / , /u t u x     are defined as eqs. (5) and (6). 

Based on the two-scale transform method, and assume: 

 T t  (56) 

  X x  (57) 

Applying eqs. (56) and (57) to eq. (55), we have: 

  1 0n
TT XX X XX XXTTu au bu u cu     (58) 

Using the traveling wave variable: 

 X vT    (59) 

Equation (58) is transformed into the following ODE: 

 2 1 2 (4)( ) '' ( ') '' 0nv a u b u u cv u     (60) 

Taking '( ) ( )u     and integrating the obtained equation, we have: 

 2 2( ) '' 0nb
v a cv

n
       (61) 

Denoting that: 

2

2 2
,

v a b

cv ncv
 


   

then we obtain: 

 '' 0n      (62) 

By the semi-inverse method, we can obtain the following variational formulation: 
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For the sake of convenience, we only consider n = 2, other values of n can be dealt 

with in a similar way. 

Case A. According to [41, 42], we search for a soliton solution in the form: 

  ( ) sech( )A    (64) 

By substituting eq. (64) into eq. (63), we obtain: 

 21
(2 6 )

12
J A A      (65) 

To find the constant A, we need to solve the following equation: 

 21 1
π (2 6 π ) 0

12 6

J
A A A

A
  


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
 (66) 

From eq. (66), we obtain: 

 
4( 1 3 )

3π
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



 
  (67) 

Therefore, the solitary wave solutions to eq. (62) are: 
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3


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Hence, we obtain: 
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Case B. According to [41, 42], we search for a soliton solution in the form: 

  ( ) sech( )tanh( )u A    (70) 

By substituting eq. (70) into eq. (63), we obtain: 

 21
(21 15 4 )

90
J A A      (71) 

To find the constant A, we need to solve the following equation: 
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From eq. (72), we obtain: 
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Therefore, the solitary wave solutions to eq. (62) are: 

 
7 5

( ) sech( )tanh( )
2


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

 
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Hence, we obtain: 

 
7 sech( ) 5 sech( )

( ) ( )
2 2

u d
  
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 

    (75) 

Conclusion 

In this paper, the generalized variational principles are illustrated step by step via 

two kinds of non-linear equations with fractal derivative. Then, the fractal variational princi-

ple for the non-linear elastic rod equation is successfully established via the two-scale fractal 

theory and the semi-inverse method, which can help us to understand the solution structures 

of the fractal model. Furthermore, solitary wave solutions of the non-linear elastic rod equa-

tion are obtained by the Ritz-like method [42]. The results in this thesis will undoubtedly have 

significant implications for the study of variational theory and periodic wave theory of physi-

cal equations, as well as the Hamilton principle and the least action principle. These concepts 

have a wide range of applications in engineering, for examples, Ma suggested a modification 

of Hamiltonian-based frequency-amplitude formulation [43], and the minimum condition for 

a variational principle was given [44] for fractal variational principles [45], applications of the 

variational principles to complex engineering problems are referred to references [46-48]. 

References  

[1] Nadeem, M., He, J.-H., The Homotopy Perturbation Method for Fractional Differential Equations: Part 
2, Two-Scale Transform, International Journal of Numerical Methods for Heat & Fluid Flow, 32 
(2022), 2, pp. 559-567 

[2] He, J.-H., et al., Good Initial Guess for Approximating Non-Linear Oscillators by the Homotopy Pertur-
bation Method, Facta Universitatis, Series: Mechanical Engineering, 21 (2023), 1, pp. 21-29  

[3] He, C. H., El-Dib, Y. O., A Heuristic Review on the Homotopy Perturbation Method for Non-Conser-
vative Oscillators, Journal of Low Frequency Noise, Vibration and Active Control, 41 (2022), 2, pp. 
572-603 

[4] Xing, R. Y. et al., Coupling Technique of Haar Wavelet Transform and Variational Iteration Method for 
a Non-Linear Option Pricing Model, Mathematics-Basel, 9 (2021), 14, 1642 

[5] He, J.-H., Variational Iteration Method – A Kind of Non-Linear Analytical Technique: Some Examples, 
International Journal of Non-Linear Mechanics, 34 (1999), 4, pp. 699-708 

[6] Anjum, N., He, J.-H., Laplace Transform: Making the Variational Iteration Method Easier, Applied 
Mathematics Letters, 92 (2019), June, pp. 134-138 

[7] Golmankhaneh, A. K., Tunç, C., Sumudu Transform in Fractal Calculus, Applied Mathematics and 
Computation, 350 (2019), June, pp. 386-401 

[8] Nadeem, M., et al., The Homotopy Perturbation Method for Fractional Differential Equations: Part 1 
Mohand Transform, International Journal of Numerical Methods for Heat & Fluid Flow, 31 (2021), 11, 
pp. 3490-3504  

[9] Mohammed, O. H., Salim, H. A., Computational Methods Based Laplace Decomposition for Solving 
Non-Linear System of Fractional Order Differential Equations, Alexandria Engineering Journal, 57 
(2018), 4, pp. 3549-3557 

[10] He, J.-H., et al., Beyond Laplace and Fourier Transforms: Challenges and Future Prospects, Thermal 
Science, 27 (2023), 6B, pp. 5075-5089 

[11] He, J.-H., Ji, F. Y., Taylor Series Solution for Lane-Emden Equation, Journal of Mathematical Chemis-
try, 57 (2019), 8, pp. 1932-1934 

https://www.emerald.com/insight/search?q=Muhammad%20Nadeem
https://www.emerald.com/insight/search?q=Ji-Huan%20He


Tian Y.: Variational Principle and Periodic Wave Solutionals for … 
1880 THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1871-1881 

[12] He, J.-H., Taylor Series Solution for a Third Order Boundary Value Problem Arising in Architectural 
Engineering, Ain Shams Engineering Journal, 11 (2020), 4, pp. 1411-1414 

[13] He, C. H., et al., Taylor Series Solution for Fractal Bratu-Type Equation Arising in Electrospinning Pro-
cess, Fractals, 28 (2020), 1, 20500115 

[14] He, J.-H., Wu, X. H., Exp-Function Method for Non-Linear Wave Equations, Chaos Soliton & Fractals, 
30 (2006), 3, pp. 700-708 

[15] He, J.-H., Exp-Function Method for Fractional Differential Equations, International Journal of Non-
linear Sciences and Numerical Simulation, 14 (2013), 6, pp. 363-366 

[16] Lv, G. J., et al., Shock-Like Waves with Finite Amplitudes, Journal of Computational Applied Mechan-
ics, 55 (2024), 1, pp. 1-7 

[17] He, J.-H., Variational Principle and Periodic Solution of the Kundu-Mukherjee-Naskar Equation, Results 
in Physics, 17 (2020), 103031 

[18] He, J.-H. On the Fractal Variational Principle for the Telegraph Equation, Fractals, 29 (2021), 1, 
21500225 

[19] Lu, J., Variational Approach for (3+1)-Dimensional Shallow Water Wave Equation, Results in Physics, 
56 (2024), 107290 

[20] Zuo, Y. T., Variational Principle for a Fractal Lubrication Problem, Fractals, 32 (2024), 5, 24500804 
[21] Jiao, M.-L., et al. Variational Principle for Schrodinger-KdV System with the M-Fractional Derivatives, 

Journal of Computational Applied Mechanics, 55 (2024), 2, pp. 235-241 
[22]  Lu, J., Application of Variational Principle and Fractal Complex Transformation to (3+1)-Dimensional 

Fractal Potential-YTSF Equation, Fractals, 32 (2024), 1, 2450027 
[23] Lu, J. et al., Variational Approach for Time-Space Fractal Bogoyavlenskii Equation, Alexandria Engi-

neering Journal, 97 (2024), June, pp. 294-301 
[24] He, J.-H., Qian, M. Y., A Fractal Approach to the Diffusion Process of Red Ink in a Saline Water, Ther-

mal Science, 26 (2022), 3B, pp. 2447-2451 
[25] Qian, M. Y., He, J.-H., Two-Scale Thermal Science for Modern Life – Making the Impossible Possible, 

Thermal Science, 26 (2022), 3B, pp. 2409-2412 
[26] He, J.-H., Variational Principles for some Non-Linear Partial Differential Equations with Variable Coef-

ficients, Chaos, Solitons & Fractals, 19 (2004), 4, pp. 847-851 
[27] Liu, H. Z., et al., Group Classifications, Symmetry Reductions and Exact Solutions to the Non-Linear 

Elastic Rod Equations, Advances in Applied Clifford Algebras, 22 (2012), Mar., pp. 107-122 
[28] Liu, J. J., Sharma-Tasso-Olver Equation Involving a New Time Fractal Derivative, Thermal Science, 25 

(2021), 3B, pp. 2101-2107 
[29] Sotomayor, A., Restuccia, A., Integrability Properties of a Coupled KdV System and its Supersymmetric 

Extension, Journal of Physics: Conference Series, 720 (2016), 012017 
[30] He, J.-H., Fractal Calculus and Its Geometrical Explanation, Results in Physics, 10 (2018), Sept., pp. 

272-276 
[31] He, J.-H., Ain, Q. T., New Promises and Future Challenges of Fractal Calculus: From Two-Scale Ther-

modynamics to Fractal Variational Principle, Thermal Science, 24 (2020), 2A, pp. 659-681 
[32] Ain, Q. T., He, J.-H., On Two-Scale Dimension and Its Applications, Thermal Science, 23 (2019), 3B, 

pp. 1707-1712 
[33] He, J.-H., Ji, F. Y., Two-Scale Mathematics and Fractional Calculus for Thermodynamics, Thermal Sci-

ence, 23 (2019), 4, pp. 2131-2133 
[34] He, C. H., Liu C., Fractal Dimensions of a Porous Concrete and Its Effect on the Concrete’s Strength, 

Facta Universitatis, Series: Mechanical Engineering, 21 (2023), 1, pp. 137-150 
[35] He, C. H., A Variational Principle for a Fractal Nano/Microelectromechanical (N/MEMS) System, In-

ternational Journal of Numerical Methods for Heat & Fluid Flow, 33 (2023), 1, pp. 351-359  
[36] He C. H., Liu C., Variational Principle for Singular Waves, Chaos, Solitons & Fractals, 172 (2023), 

113566 
[37] Wang, K. L. , He, C. H., A Remark on Wang’s Fractal Variational Principle, Fractals, 27 (2019), 8, 

1950134  
[38] Wu, Y., He, J.-H., Variational Principle for the Kaup-Newell System, Journal of Computational Applied 

Mechanics, 54 (2023), 3, pp. 405-409  
[39] He, J.-H., et al., Variational Approach to Fractal Solitary Waves, Fractals, 29 (2021), 7, 2150199 
[40] Guan, Y. Z ., et al., Variational Formulations for a Coupled Fractal-Fractional KdV System, Fractals, 32 

(2024), 3, 24500543 

https://www.sciencedirect.com/science/journal/20904479
https://www.emerald.com/insight/publication/issn/0961-5539
https://www.emerald.com/insight/publication/issn/0961-5539


Tian Y.: Variational Principle and Periodic Wave Solutionals for  … 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1871-1881 1881 

[41] He, J.-H ., et al., Solitary Waves Travelling along an Unsmooth Boundary, Results in Physics, 24 (2021), 
104104 

[42] He, J.-H., Variational Approach for Non-Linear Oscillators, Chaos Solitons & Fractals, 34 (2007), 5, pp. 
1430-1439 

[43] Ma, H. J., Simplified Hamiltonian-Based Frequency-Amplitude Formulation for Non-Linear Vibration 
Systems, Facta Universitatis, Series: Mechanical Engineering, 20 (2022), 2, pp. 445-455 

[44] He, J.-H., et al., On a Strong Minimum Condition of a Fractal Variational Principle, Applied Mathemat-
ics Letters, 119 (2021), 107199 

[45] He, J.-H., et al., A Fractal Modification of Chen-Lee-Liu Equation and its Fractal Variational Principle, 
International Journal of Modern Physics B, 35 (2021), 21, 2150214 

[46] Ji, F.Y., et al., A Fractal Boussinesq Equation for Non-Linear Transverse Vibration of a Nanofiber-Rein-
forced Concrete Pillar, Applied Mathematical Modelling, 82 (2020), June, pp. 437-448 

[47] He, J.-H., et al., Pull-Down Instability of the Quadratic Non-Linear Oscillator, Facta Univ.-Ser. Mech., 
21 (2023), 2, pp. 191-200 

[48] Mozafari, M. J. S., Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Com-
posite in Low Frequencies: A Numerical Study Using FEM, Sound and Vibration, 58 (2024), Mar., pp. 
81-100 

 
 

 

 

 

Paper submitted: March 15, 2024   
Paper revised: July 2, 2024 2025 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: July 2, 2024 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.  

https://webofscience.clarivate.cn/wos/author/record/390558
https://webofscience.clarivate.cn/wos/author/record/390558
https://webofscience.clarivate.cn/wos/author/record/38748464
http://www.vin.bg.ac.rs/index.php/en/

