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The study examines the stochastic bifurcation phenomenon of a generalized and 
multistable Rayleigh system subjected to fractional damping driven by Gaussian 
white noise. First, the harmonic balance technique is employed to minimize the 
error in terms of mean square, thereby deriving the approximate equal integer-
order system from the original system with fractional-order elements. Subse-
quently, the stationary probability density function of the system is determined 
using the stochastic averaging method. Subsequently, employing singularity theo-
ry, the critical conditions of system parameters for stochastic P-bifurcation of the 
original system are identified. Finally, a qualitative analysis of the stationary 
probability density function curves of the system amplitude is conducted in each 
region delineated by the boundary set curves. The analytical solutions were 
found to align with the numerical findings obtained from Monte-Carlo simula-
tion, thereby corroborating the theoretical deductions. The methodology and 
findings presented in this study have the potential to enhance system response 
control through the design of fractional-order controllers. 

Key words: fractional damping, stochastic P-bifurcation, boundary set curves, 
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Introduction 

Fractional calculus represents an extension of traditional calculus by incorporating 

non-integer orders, which allows for the modeling of memory properties in viscoelastic mate-

rials compared to conventional integer-order derivatives, for examples, the fractal lubrication 

problem [1], the fractional Schrodinger-KdV system [2], the fractal Potential-YTSF equation 

[3], the fractal Bogoyavlenskii equation [4], the fractal oscillator [5], fractal MEMS systems 

[6-9], and fractal concretes [10]. The fractional derivative (FD) involves convolution, which 

facilitates the representation of memory and cumulative effects over time. Consequently, the 

fractional derivative has been demonstrated to be a more effective mathematical instrument 

for characterizing memory properties [11-14], and has emerged as a valuable mathematical 
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tool in a range of research domains, including anomalous diffusion [15], viscoelastic mechan-

ics [16, 17], soft matter physics [18], and advection-reaction-diffusion [19]. It offers a more 

precise description of diverse reaction processes than integer-order calculus, particularly in 

the context of engineering, where ambient noise is pervasive. Consequently, the investigation 

of the dynamic properties and the impacts of fractional-order parameters and noise excitations 

(NE) on stochastic systems is of significant importance. 

Recent research has examined the dynamic behaviors of multi-stable and non-linear 

systems under various NE, yielding numerous insights. For example, studies of Duffing-Van 

der Pol (DVdP) oscillators subjected to colored noise, Levy noise, and combined random and 

harmonic noise [20-24] have attracted significant attention. In their study, Wu and Hao [25] 

examined a generalized and tri-stable DVdP oscillator under multiplicative colored noise. They 

analyzed the stationary probability density function (sPDF) of system amplitude (SA) and the 

impact of noise intensities and other parameters on stochastic P-bifurcation (SPB). Qian and 

Chen [26] investigated the stochastic response of modified single-DoF vibro-impact oscillators 

with a recovery factor under broadband NE, utilizing the Markov approximation method to ob-

tain the sPDF of SA and energy envelope. Huang and Jin [27] investigated the dynamical re-

sponse and sPDF of a strongly non-linear, single-DoF system excited by GW noise, while Sun 

and Yang [28] examined the stability of fractional-order energy acquisition systems under GW 

noise. In a study by Li et al., [29] the SPB behavior of a DVdP system with FD was examined 

under both multiplicative and additive colored NE. Variations in parameters that induce SPB 

behavior were identified. A number of non-linear vibration systems [30-38], including those 

with extensive applications in energy harvesting and control, have been the subject of exten-

sive study. These include the six DoF system and the 3-DoF auto-parametric system. 

Due to the intricate nature of FD, qualitative analysis of parametric influences on 

vibration is feasible. However, determining critical parameter conditions is challenging yet 

crucial for analyzing and designing fractional-order systems. It is of paramount importance to 

consider the critical parameter conditions when analyzing and designing fractional-order sys-

tems. This paper examines the non-linear vibration of fractional-order stochastic systems by 

evaluating the FD and the impact of noise, utilizing a generalized and multistable Rayleigh 

system with a fractional element. The singularity method and stochastic averaging method 

(SAM) were employed to determine the critical parametric conditions for SPB. Subsequently, 

an analysis of the sPDF of the original system across different regions of the parametric plane 

was conducted.  

Establishment of the comparable system 

The initial conditions of the Caputo FD system, as elucidated in [28], not only im-

part a distinctive physical meaning to the system but also give rise to an integer-order differ-

ential equation. Hence, we used the Caputo FD in this study: 
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where p represents the order of FD: 

( )[ ( )], 1 , , [ , ], ( )C p m
a D x t m p m m N t a b x t      

is the m-order derivative of ( )x t  and ( )m  is the Euler Gamma function. 
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As for a determinate physical system, the initial motion time of the oscillator is t = 0, 

and typically, the Caputo FD is usually adopted: 
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where m – 1 < ≤ m, m ÎN. 

This research explores the generalized Rayleigh system featuring a fractional damp-

ing element perturbed by GW noise: 

 2 4 2
1 2 0( ) D ( )C px x x x w x x t            (3) 

where   denotes the linear damping coefficient, 1 , 2  stand for the system non-linear dam-

ping coefficients, and w represents the system intrinsic frequency. The:  

0 D [ ( )]C p x t
 

denotes the p ( 0 1p  ) order Caputo derivative of ( )x t , and ( )t  represents the GW noise, 

satisfying: 

 [ ( )] 0, [ ( ) ( )] 2 ( )E t E t t D         (4) 

where D  indicates the intensity of the GW noise ( )t , and ( )   is the Dirac function. 

Supposing that the FD encompasses both restoring and damping forces [39-42], the 

equivalent system can be described: 

 2 4 2
1 2( ) [ ( , )] [ ( , ) ] ( )x t x x C p w x K p w w x t            (5) 

where ( , )C p w and ( , )K p w represent the undetermined coefficients of the equivalent restoring 

and damping forces of :  

0 D [ ( )]C p x t  

The error between systems (3) and (5) is: 

 0( , ) D ( , )C pe C p w x x K p w x    (6) 

According to the equivalent theory [43], and minimizing the error (6) in the mean-

square-sense, then the indefinite coefficients ( , )C p w  and ( , )K p w  are determined by: 
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Given that the original system (3) exhibits a stationary solution in the periodic form 

as described below: 

 ( ) ( )cos ( )x t a t t  (8) 

where ( )t wt   , thus: 

 ( ) ( )sin ( )x t wa t t  ， 2( ) ( )cos ( )x t w a t t   (9) 



Li, Y., et al.: Non-Linear Stohastic Response and Bifurcation Analysis of … 
1864 THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1861-1870 

By inserting eqs. (6), (8), and (9) into eq. (7), and executing the integral averaging of 

 , the ultimate expressions of ( , )C p w  and ( , )K p w  can be obtained: 
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Thus, the equivalent oscillator corresponding to system (5) is: 

 2
0( ) ( )x t x w x t     (11) 
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The sPDF of the system amplitude 

To get the sPDF of the SA, we suppose that the system (11) possesses a solution 

with periodic form. Subsequently, the transformation described by [44] is introduced: 
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where w0 denotes intrinsic frequency of the isovalent system (11), ( )a t  and ( )t  denote the 

magnitude and temporal alignment characteristics of the system’s response, in that order, and 

they are both random processes. 

By inserting eq. (13) into eq. (11) and employing the deterministic averaging appro-

ach, we achieve:  
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in which 

 

2 2 2 2 4 4 2 6 6 2
11 1 0 2 0 3 0

8 8 8 1
4 0

2 2 2 4 4 2
21 1 0 2 0

6 6 2 8 8 8 1
3 0 4 0

11
0

21

( , ) sin [ sin sin sin

π
sin sin

2

( , ) sin cos [ sin sin

π
sin sin sin

2

sin

p

p

F a a a w a w a w

p
a w w

F a a w a w

p
a w a w w

G
w

G

        

  

       

    







     

 
   

 

    

 
    

 

 

0

cos

aw


 

 (15) 



Li, Y., et al.: Non-Linear Stohastic Response and Bifurcation Analysis of … 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1861-1870 1865 

Equation (14) is considered as the Stratonovich-stochastic differential formula [45]. 

Upon incorporating the respective Wong-Zakai correction term [46], we can derive the rele-

vant Ito stochastic differential formula: 
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where B(t) is the standard Wiener processes and: 
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Based on the SAM [47], and then averaging eq. (16) over Φ, we derive the follow-

ing averaged Ito differential formula: 
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The accurate expression of the averaged diffusion and drift coefficients is deter-

mined: 
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where 2 2
0 cos( π/2).pw w w p   

Equation (19) shows that the averaged Ito equation for a(t) is not dependent of θ(t), 
so the random process a(t) represents a 1-D diffusion process. Then the corresponding Fok-

ker-Planck-Kolmogorov (FPK) formula of a(t) is: 
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The conditions for boundary fulfill: 
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According to the boundary conditions (21), the sPDF of SA is obtained: 
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where C is the constant after normalization.  
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By inserting eq. (19) into eq. (22), the detailed equation for the sPDF of SA is at-

tained: 

2 2 2
0 0( ) exp
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in which: 
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The SPB analysis of the system amplitude 

The SPB phenomenon denotes the variation in the quantity of peaks observed in the 

sPDF curves. In this section, we utilize singularity theory to discuss the parametric impacts on 

the SPB behaviors of the system, aiming to determine the crucial parametric conditions. 

For simplicity p(a) is presented by: 
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Based on the singularity theory [48], it is necessary for the sPDF of the SA to satisfy 

the requirements: 
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By inserting eq. (24) into eq. (26), the following condition can be attained [25, 29]: 

  20, 2 0H R RQ R R Q RQ RQ              (27) 

where H denotes the crucial condition for the variations of the quantity of peaks in the PDF 

curve. 

Taken the parameters as 0.2   , 1 2.45  , 2 4.6  , w = 1, and 1  , based on 

eq. (27), the boundary set for SPB of the system with p and D are acquired, as depicted in fig. 1. 

As depicted in fig. 1, the transition set curve’s intercepts at D = 0 represent the bi-

furcation values p1 = 0.128, p2 = 0.329, respectively. Under the influence of additive NE, the 

boundary set curve of the system (3) takes on an approximately triangular shape. Moreover, 

the unfolding parametric plane is assigned to 2 sub-regions by the boundary set curve. On the 

basis of the singularity theory, the topological structure of the sPDF curve at various points (p, 

D) within the same area is qualitatively similar.  
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Initially, we investigate the sPDF of am-

plitude p(a) for one point (p, D) in each of the 

two sub-regions depicted in fig. 1. Subsequent-

ly, we contrast the theoretical solution with the 

numerical result acquired through Monte-Carlo 

simulation (MCS) of the initial system (3) uti-

lizing the numerical technique for FD [39]. The 

respective outcomes are displayed in fig. 2. 

As depicted in fig. 2, the parametric area 

(p, D), where the sPDF curves exhibiting multi-

modal are enclosed by the nearly triangular area 

in fig. 1, and the area 1 can form a bi-modal ar-

ea of the sPDF curve for SA.  

 

Figure 2. The PDF of amplitude p(a) in various sub-areas of fig. 1 with p and D as the unfolding 
parameters; (a) (p, D) in Region 1 of fig. 1 and (b) (p, D) in Region 2 of fig. 1    

After considering (p, D) as p = 0.3, D = 0.005 in Region 1, the PDF p(a) of the sys-

tem has two peaks, and a stable limit cycle emerges with a corresponding amplitude a distant 

from the original position. Notably, the probability around the origin is non-zero, indicating 

the coexistence of the equilibrium and limit cycle within the system concurrently, as dis-

played in fig. 2(a). Conversely, when the p = 0.2, D = 0.002 in Region 2, the peak of the PDF 

p(a) is distant from the origin, and a stable limit cycle persists within the system, as illustrated 

in fig. 2(b). These findings indicate that the sPDF curve of SA can arise in various types de-

pending on the values of noise intensity and FD order. This implies that the sPDF p(a) could 

be modulated by p and D, respectively. Additionally, a comparison between the numerical da-

ta derived from MCS and the analytical solutions derived through stochastic averaging tech-

nique demonstrates good alignment, affirming the validity of the conceptual analysis process. 

Conclusion 

In this study, we examine the SPB behavior of a fractional-order and bistable Ray-

leigh system under the influence of an additive white noise process. In accordance with the 

principle of equivalence, we transform the original fractional-order system into an equivalent 

 
Figure 1. Boundary set under additive NE  
with p and D as the unfolding parameters 
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integer-order system of comparable significance. By employing the SAM, we derive the sPDF 

of the SA. Moreover, employing singularity theory, we establish crucial parameter conditions 

for the system’s SPB, offering valuable theoretical insights for system design. The congru-

ence between the numerical findings obtained via MCS and the analytical solutions provides 

compelling evidence for the validity of our theoretical analysis. Our findings indicate that 

both the FD order and noise intensity can induce the SPB phenomenon, resulting in a transi-

tion from a single to a dual-peak distribution in the sPDF curve of the system, contingent up-

on suitable unfolding parameters. The present work can be extended to a generalized Rayleigh 

system with quadratic non-linearity or singularity as that discussed in [49, 50]. 
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