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In this paper, we study the bifurcation characteristics and bursting oscillation of 
the Duffing-Van der Pol system with periodic excitation. Due to the different fre-
quency scales between the excitation frequency and the natural frequency in the 
oscillator, when the periodic excitation changes slowly with time, the system is 
considered as a slow subsystem, and when it is fixed, the system is considered as 
a fast subsystem. We analyze the bifurcation characteristics of the fast subsystem 
and use the slowly varying parameter as the bifurcation parameter to show how 
the bursting oscillations are generated. Furthermore, the phase diagram and 
time-history diagram of fold-fold bursting oscillation, fold-subHopf bursting os-
cillation, supHopf-supHopf bursting oscillation, and homoclinic-homoclinic 
bursting oscillation are given by numerical simulation. Combined with the fig-
ures, it is found that these four kinds of bursting oscillations with bifurcation de-
lay phenomenon are symmetrical and further reveal the bifurcation mechanisms 
of these four kinds of bursting oscillations. 

Key words: fast-slow dynamics, fold bifurcation, homoclinic bifurcation,  
Hopf bifurcation 

Introduction  

Multi-time-scale non-linear dynamical problems are an important component of 

non-linear scientific research, which is very different from the dynamic behavior of systems 

on a single time scale. The study of multi-time scale problems can be traced back to the anal-

ysis of boundary layer fluid characteristics [1]. With the rapid development of modern science 

and engineering technology, more and more multi-time-scale non-linear dynamic problems 

have emerged. For example, vibration energy harvesters [2], chemical systems [3], aircraft 

systems [4], electromechanical systems [5], and so on. 

Van der Pol oscillator [6, 7] and Duffing oscillator [8, 9] are both non-linear systems 

with important application background and are well-known models in mechanics and physics. 

The Duffing-Van der Pol equation combines the features of the Duffing oscillator (non-linear 

spring force) and the van der Pol oscillator (non-linear damping force) [10, 11]. Analytical solu-

tions of such equation are difficult to obtain though we have some famous analytical methods 

for simple non-linear oscillators, for examples, the homotopy perturbation method [12-14], the 

variational iteration method [15, 16], He’s frequency formulation [17, 18], so various numerical 
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methods were appeared to study such complex problems, however, all numerical approaches re-

quires given parameters and given initial conditions [19], this requirement makes dynamical 

analysis difficult, it can not figure out some important criteria for periodic motion [8, 9], chaotic 

motion [20-22], pull-in motion [23-25], and bifurcation [7]. The pull-in instability is extremely 

studied in micro-electromechanical systems for safe and reliable operation [26-28]. The study of 

the Duffing-Van der Pol equation is often associated with non-linear dynamics and chaos theo-

ry. The equation exhibits a rich variety of dynamical behaviors, including periodic motion, bi-

furcations, chaos, and strange attractors. The system has both fast and slow time scales. The fast 

oscillations are associated with the natural frequencies of the system, while the slow variations 

occur due to parameter changes or external forcing. In summary, the slow-fast dynamics of the 

Duffing-Van der Pol equation involves the coexistence of fast oscillations and slow variations, 

and the analysis of these dynamics is essential for understanding the behavior of the system, es-

pecially in the presence of bifurcations and complex non-linear phenomena. 

Description of the equation and  

bifurcation characteristics 

The description of the equation 

In this paper, we consider the non-autonomous Duffing-Van der Pol oscillator de-

scribed [11]: 

 
3 2(1 ) cos( )

x y

y αx βx μ x y γ ωt



     
 (1) 

where x, y denote the state variables, the dot means the differentiation of the time t,  
α, β, μ = Ο(1) are real parameters, and γ and ω (0 < ω << 1) are the amplitude and frequency 

of the external excitation, respectively.  

In order to reveal the fast-slow bursting behaviors of the system (1), defining the 

new parameter F = γcos(ωt), system (1) becomes: 

 
3 2(1 )

x y

y αx βx x y F



     
 (2) 

From the perspective of the slow-fast analysis, there is an order magnitude gap be-

tween excitation frequency ω and natural frequency Ω. The system (2) is regarded as the fast 

subsystem and system (1) is the slow subsystem.  

The equilibrium point and its stabilities  

From system (2), we can acquire the equilibrium point E(x0, 0) satisfies the following 

cubic equation of one variable: 

 3
0 0 0βx αx F    (3) 

The Cardan formula [29] is used to find the roots of the eq. (3). When 0,   eq. (3) 

has one real root 
1/3 1/3

0 ;x A B   when Δ = 0, eq. (3) has two real roots 
1/3

0 2x A or 
1/3

0 ;x A   when 0,   eq. (3) has three real roots 
1/3 1/3

0x A B  and: 

 

1 1

3 3
0

1 3 1 3

2 2 2 2

i i
x A B

   
          
   
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in which: 

 

1 12 3

2 2
2 3

, ,
2 24 27

F F F
A B



  
          

The stabilities of equilibrium points can be decided by the linearization theory. Lin-

earizing system (2) at 0( ,0),E x  we can gain the following Jacobian matrix: 

 
2 2
0 0

0 1

3 (1 )
J

βx μ x

 
  

     

 (4) 

and its characteristic equation can be expressed: 

 2 2 2
0 02 2

0 0

1
det (1 ) 3 0

3 (1 )
x x

x x


    

   

 
      

    

 (5) 

According to the Routh-Hurwitz criterion [30], we can gain the following stability 

conditions: 

 2 2 3
0 0 0 0(1 ) 0, 3 0, 0x x x x F            (6) 

By adjusting the value of parameters, the stability condition is not satisfied, different 

types of bifurcation may appear which will result in different patterns of bursting oscillations. 

Fold bifurcation 

Fold bifurcation [31] can cause the jumping phenomenon between different equilib-

rium points. According to eq. (5), the conditions of fold bifurcation is obtained: 

 2 3
0 0 03 0, 0x x x F         (7) 

Eliminating x0, we have: 

 3 24 27 0F    (8) 

In this case, eq. (5) has two roots written as 1 0   and
2

2 0(1 ),x     which 

means the occurrence of fold bifurcation.  

Hopf bifurcation 

Hopf bifurcation [32] can cause the occurrence of a limit cycle which leads to the 

periodic bursting oscillation. Substituting i    into eq. (5) and eliminating ω, then the 

first condition of Hopf bifurcation generated by E(x0, 0):  

 2 2
0 01, 3 0, ( )x F x           (9) 

Taking the partial derivatives in both sides of eqs. (5) and (3) with respect to F, let-

ting i   and separating the real part of (dλ/dF), we have the following second condition of 

Hopf bifurcation: 

 
2 2

0 0 0

2 2 2 2 2
0 0

4 6 (1 )d
Re 0

d ( )(3 )(3 )[4 (1 ) ]

x x x F

F x x

   

      

  
   

    
 (10) 
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The second condition of Hopf bifurcation is also satisfied. So, it is proved that Hopf 

bifurcation will occur in the system (2). In order to judge the types of Hopf bifurcations, we 

need to calculate the first Lyapunov coefficient l1(0). By linear transformation, the equilibri-

um point E(x0, 0) is shifted to the origin point (0, 0), system (2) can be rewritten: 

 
2 2 3

0 0

0

3 2

x x
J

y y x x x xy x y x   

    
                

 (11) 

Then we compute the eigenvectors q and p of Matrix J and JT, which satisfy 

, TJq i q J p i p     and , 1,p q   where JT is the transposed matrix of J and <·,·> is the 

standard scalar product in R2. By computation, we have: 

 
1

, (1, )
2 2

T
Ti

p q i


 
  
 

 (12) 

The bilinear and trilinear functions are: 

 
0 1 1 0 1 2 2 1

1 1 2 1 2 1 2 1 1 1 1 1

0
( , )

6 2 ( )

0
( , , )

2 ( ) 6

B x y
x x y x x y x y

C x y z
x y z x y z x y z x y z

 

 

 
  

   

 
  

   

 (13) 

So, the first Lyapunov coefficient is: 

 

1

1 1

, ( , , ) 2 , [ , ( , )]1 3
(0)

2 2 3, [ , (2 ) ( , )]

p C q q q p B q A B q q
l

p B q i E A B q q

  

   





       
  

     

 (14) 

When ( 3 ) 0,     a stable supercritical Hopf bifurcation occurs. When 3 ,   

co-dimension-2 degenerate Hopf bifurcation occurs. When ( 3 ) 0,μ α β   an unstable sub-

critical Hopf bifurcation occurs.  

Melnikov analysis for heteroclinic and  

homoclinic bifurcations 

As known to all, Melnikov method presents a procedure to calculate the parameter 

conditions of the homoclinic and heteroclinic bifurcations to chaos [33].  

The perturbed system (1) is written: 

 
3 2[ (1 ) cos( )]

x y

y x x x y t     



     
 (15) 

which corresponds to an integrable Hamiltonian system given by: 

 
3

x y

y x x 



  
 (16) 

whose associated the potential function is: 

 
2 4

( )
2 4

x x
x

 
    (17) 
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and Hamiltonian function is: 

 
2 2 4

( , )
2 2 4

y x x
H x y

 
    (18) 

When 0,  , the system (16) has three fixed points (0, 0), [
1/2( / )   , 0]. Sup-

pose 0, < 0,α   because: 

 (0) 0,   

1

2
2 0


 



 
           

  

so point (0, 0) is a center: 

 

1

2
,0

α

β

 
  

   
  

  

are saddles. The heteroclinic orbits connecting saddle points can be solved by:  

 
2 2 4

0
2 2 4

x x x 
    (19) 

Set 0,t  (0) 0,x   we have: 

 

1

22
(0)

α
x

β

 
   

 
 

For a closed nodal energy (H = 0), performing the integration over eq. (19), we 

have: 

 

0

1/2
4

2

d

2

x

x

x
t

βx
αx

 
 
   
 

  (20) 

Then the heteroclinic orbits can be given by: 

 

1/2 1/2
0

1/2
0 2

1/2

( ) tanh
2

( ) sech
2( 2 )

α
x t t

α α
y t t

β








    
     

   

  
    

   

 (21) 

According to the definition of Melnikov function, using eq. (21), the Melnikov inte-

gral of heteroclinic orbit is obtained: 
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0 2 0 0
Hete 0 0

0 2 0 2 0 2 0
0

1/21/2

02 1/2

( ) { [1 ( ) ] ( ) cos[ ( )]} ( )d

( ) d ( ) ( ) d cos( ) cos( ) ( )d

(5 )(2 ) 2 π
2 π cos( ) csch

15 (2 )

M t x t y t t t y t t

y t t x t y t t t t y t t

t

  

    

    
 

 



  



  

   

  

     

    

    
     

   



    (22) 

where t0 means the cross-section time of the Poincare map. Therefore, the necessary condi-

tions for the occurrence of heteroclinic orbits in system (1) are: 

 

0

1/2
1/2 Hete

2

π
sinh

(2 ) d
2 (5 )( ) , 0

d15π t t

M

t




    

 

 
 
 

     (23) 

When 0, 0   , because  0 0δ α   , 1 2[ ( / ) ] 2 0/δ α β α      , so point (0, 0) is 

saddle, 1 2[ ( / ) , 0],/α β  are centers. The homoclinic orbits connecting saddle points can be 

written as:  

 

1/2

0 1/2

1/2

0 1/2 1/2

2
( ) sech ( )

2
( ) sech ( ) tanh ( )

x t t

y t t t






  






 
     

 

 
          

 

 (24) 

According to eq. (24), the Melnikov function of homoclinic orbit is given: 

  0 2 0 0
Homo 0 0( ) 1 ( ) ( ) cos ( ) ( )dM t μ x t y t γ ω t t y t t



  



     
   

0 2 0 2 0 2 0
0= ( ) d ( ) ( ) d sin( ) sin( ) ( )dμ y t t μ x t y t t γ ωt ωt y t t

  

   

  

       

 

1 2

1 2
02 1 2

(5 4 ) 2 π
=4 ( ) π sin( ) sech

15 2( )

/

/

/

β α ω
μα α ωγ ωt

β α

   
    

   
 (25) 

Therefore, the necessary conditions for the occurrence of cross-section of homoclin-

ic orbits in system (1) are: 

 

0

1/2
1/2 Homo

3/2

π
cosh

2( ) d
2 (5 4 )( 2 ) , 0

d15π t t

M

t




    

 

 
 

 
     (26) 
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By calculating eqs. (23) and (26), system (1) will progress to chaotic motion via het-

eroclinic or homoclinic bifurcation which means the system (1) appears chaotic behaviors in 

the sense of smale’s horseshoe [34].  

Numerical simulations of bursting oscillations 

System (1) is a multi-parameter dynamic system. In this part, the dynamical behav-

ior of slow subsystem is numerically simulated by the stability and bifurcation of the fast sub-

system.  

Figures 1 and 2 show the phase diagram and time history diagram of system (1) at 

different excitation frequencies scales, respectively. It can be seen from fig. 1 that the system 

is chaotic motion and the system in fig. 2 is bursting oscillators. When the frequency is small, 

the chaotic motion of the system has hysteresis, which is a common phenomenon of bursting 

oscillators. 

 

Figure 1. Chaotic motion of fast subsystem for β = 1, μ = –0.1, α = –1, γ = 3, and ω = 1;  
(a) phase portrait, (b) time history of x, and (c) locally enlarged image of the (b) 

 

Figure 2. Bursting oscillators of slow subsystem for β = 1, μ = –0.1, α = –1, γ = 3, and ω = 0.005;  

(a) phase portrait, (b) time history of x, and (c) locally enlarged image of the (b) 

In order to illustrate the bursting oscillators of system (1), so we take the parameters 

at 1, 1, 0.005       in the following. From the previous analysis, we know that the sys-

tem (1) has four kinds of bifurcations: folding bifurcation, Hopf bifurcation, heteroclinic bi-

furcation, and homoclinic bifurcation. In addition, the number of equilibrium points changes 

correspondingly with the change of F.  

The phase portrait, the corresponding time history and locally enlarged image of 

time history of fold-fold bursting oscillators are demonstrated in figs. 3(a)-3(d). Because of 

the fold bifurcation of the fast subsystem, the jumping phenomenon occurs, which causes the 

trajectory of the slow subsystem to jump back and forth between the upper and lower stable 
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branches. During the whole period of bursting oscillation, adjusted by folding bifurcation, the 

trajectory undergoes the transition between two quiescent states and two spiking states. 

 

Figure 3. Fold-fold bursting oscillators for α = –3.5, γ = –2.6; (a) phase portrait, (b) time history of x,  
(c) locally enlarged image of the (b), and (d) locally enlarged image of the (b)  

Similarly, figs. 4(a)-4(c) show the phase portrait, the corresponding time history and 

locally enlarged image of time history of fold-subHopf bursting oscillators. It is found that the 

trajectory firstly moves to the point of subcritical Hopf bifurcation, then subcritical Hopf bi-

furcation occurs and the equilibrium point is unstable. However, because of the bifurcation 

delay, the trajectory of the system will continue to move around the equilibrium point, and af-

ter some distance, it will jump to another subcritical Hopf bifurcation point. At this point, the 

trajectory is half complete. 

Figure 5 depicts the supHopf -supHopf bursting oscillators. From the figure, we can 

see two stable limit cycles generated by the supercritical Hopf bifurcation and the jump of the 

orbit at the two bifurcation points.  

Figure 6 is the corresponding graph of homoclinic-homoclinic bursting oscillators. 

As we can see, when the orbit moves to the homoclinic bifurcation point, the delayed limit 

cycle is generated and gradually increased, and then absorbed by another homoclinic bifurca-

tion point. The entire orbit is generated by two homoclinic bifurcation points and two hystere-

sis loops. 
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Figure 4. Fold-subHopf bursting oscillators for α = –1.4, γ = –0.65; (a) phase portrait,  
(b) time history of x, and (c) locally enlarged image of the (b) 

 

Figure 5. SupHopf -supHopf bursting oscillators for α = –3.5, γ = –4.6; (a) phase portrait,  
(b) time history of x, and (c) locally enlarged image of the (b) 

 

Figure 6. Homoclinic-homoclinic bursting oscillators for α = –0.8, γ = 15.5; (a) phase portrait,  
(b) time history of x, and (c) locally enlarged image of the (b) 

Conclusion 

This paper studies the fast-slow dynamics of the Duffing-Van der Pol system with 

slow varying periodic excitation. The theoretical analysis reveals the conditions for fold bifur-

cation, Hopf bifurcation, heteroclinic bifurcation, and homoclinic bifurcation, as calculated 

from system (2). The system produces different bursting oscillations under certain parameter 

conditions, with the excitation amplitude adjusted. We have obtained the phase diagram and 

time history diagram of the following types of bursting oscillations: fold-fold, fold-subHopf, 

supHopf-supHopf, and homoclinic-homoclinic. 
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