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The objective of this paper is to present novel sufficient conditions for the oscilla-
tion of all solutions of a class of second-order non-linear differential equations 
with a damping term. Our oscillation criteria represent an improvement, exten-
sion, simplification, and unification of a number of existing ones. The advantages 
of the obtained results are illustrated by an example. 
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Introduction 

The oscillation of differential equations has a profound physical background, and it 

is necessary to use differential equations in practical problems such as engineering problems, 

bacterial cultivation problems, population growth problems, and infectious diseases. The 

study of oscillation of differential equations has considerable potential for further develop-

ment and application. The study of second-order differential equations has received consider-

able attention from researchers. The second-order non-linear differential equations with 

damping terms studied in this article have a wide range of applications in practical problems 

such as engineering and fluid dynamics: 
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where z(t) = x(t) + c(t)x[τ(t)], α > 0, β > 0. We assume that the following conditions hold:  
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The oscillation of second-order differential equations in the case of α = β or α = 1, 

β > 0, or β ≥ α, or α = 1, 0 < β < 1 has been studied in references [1-15]. In this paper, we 

study eq. (1) in the cases β ≥ α or α > β. New oscillation criteria for eq. (1) have been derived. 

The criteria have been enhanced, expanded, simplified, and unified with a number of existing 

criteria. The advantages of the results obtained are illustrated by several examples. 

Oscillation criteria  

In this paper, we study the non-canonical form: 
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Lemma 1. If ( )x t  is an eventually positive solution of eq. (1) and ( ) 0z t   for 0t t , 

then: 

   0( )[ ( )] ( ) ( ) 0,R t z t Q t z t t t 
     (3) 

where ( ) ( ) ( )[1 ( )] .Q t E t q t c t    

Proof. Equation (1) is multiplied by E(t), we have: 
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from ( ) ( ) ( ) [ ( )]z t x t c t x t   and z′(t) < 0 for t ≥ t0, we get: 
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from eq. (4), we get: 
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Lemma 2. If x(t) is an eventually positive solution of eq. (1) and z′(t) < 0 for t ≥t0, 

then: 
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Proof. Equation (1) is multiplied by E(t), we have: 
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Proof. We use the method of proof to the contrary, suppose eq. (1) has non-oscil-

latory solutions x(t), suppose x(t) > 0 for 0 ,t t we have: 
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If β ≥ α, from Lemma 2, we have: 
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If α > β, we have: 
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synthesis β ≥ α and α > β, let λ = min{α, β}, k = min{k1, k2}, we have: 
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multiply (10) by ρ(t), integral this inequality in [T, t], and using the inequality [6]: 
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which contradicts the fact that (8). 
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which contradicts the fact that (9), then eq. (1) is oscillatory. 
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Lemma 3. If ( )x t  is an eventually positive solution of eq. (1) and ( ) 0z t   for 0t t , 

then: 
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 
   

 


  

    


 

9

1
( ) ( ) ,

[ ( )( ( ) ]
V t t t T t

R t z t
 








   


  

since { ( )[ ( )] } 0,R t z t    there exists a 1T T  such that 1 1( )[ ( )] ( )[ ( )]R t z t R T z T      for 

1,t T we have: 

1 1

1
( ) ( )

[ ( )( ( ) ]
V t t

R T z T
 








 


, 1t T  
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Thus, ( ) ( )V t t  is bounded. Then ( ) ( )V t t  is bounded, where  max ,   . 

(ⅱ) The following proof (11) is correct，if   ，from Lemma 1, we have: 

1

1
( ) ( ) ( )

( ) ( )
V t Q t V t

R t z t




 

 

 


   ,   0t t  

since ( ) 0z t  ,we have 1( ) ( )z t z T  for 1t T , let 1

1

1

( )
m

z T
 




 , we get: 

11

1( ) ( ) ( ) ( )V t Q t m R t V t


 
   ,   1t T  

If   ，we have: 

11

( ) ( ) ( )[ ( )] ( )V t Q t R t z t V t
  

  
 

    ,   1t T  

from Lemma 1, we have 1 1( )[ ( )] ( )[ ( )]R t z t R T z T      for 1t T , we get: 

1

1

0
1

( )
( ) [ ( )]

( )

R t
z t z T

R t





    ,   1t T  

11

2( ) ( ) ( ) ( )V t Q t m R t V t





   ,    1t T  

where 2 1 1( )[ ( )] .m R T z T
   

 

 

   

Synthesis    and   ,let  max ,   ,  1 2min ,m m m ,we get: 

11

( ) ( ) ( ) ( )V t Q t m R t V t





   ,    1t T  

Theorem 2. Hypothesis (2) and (8) holds, and the following is satisfied:  

 1

0

limsup ( ) ( ) d
( ) ( )

t

t t

k
s Q s s

s R s





 
    

 
  (13) 

where  max ,   , 0k  , then eq. (1) is oscillatory. 

Proof. We use the method of proof to the contrary, suppose eq. (1) has non-

oscillatory solutions x(t), suppose ( ) 0x t   for 0t t . We have 1[ ( ) ( ) ( )] 0R t z t z t     for 

0t t . Hence 
1

( ) ( ) ( )R t z t z t


   is decreasing function, therefore ( )z t is also of one sign. 

From the proof process of Theorem 1, there exists a 8 0t t  such that ( ) 0z t   for 8t t or 

there exists a 9 0t t  such that ( ) 0z t   for 9t t . 

(i) If ( ) 0z t   for 8t t , the first half of Theorem 1 proves that it contradicts (8). 

(ⅱ) If ( ) 0z t   for 9t t , from (11) of Lemma 3, we get: 

11

( ) ( ) ( ) ( )Q t V t m R t V t





  ,    1t T . 1T T  

integral this inequality in 2[ , ]T t  for 2 1 9 0t T T T t t     , we get: 

11

2 2 2

1( ) ( )d ( ) ( ) ( ) ( ) ( )d ( ) ( ) ( )d

t t t

T T T

s Q s s t V t s s V s s m s R s V s s


    


            
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from Lemma 3, ( ) ( )V t t  is bounded, there exists a 0M   such that ( ) ( )V t t M  , since 
1/( ) ( )t R t   , we get: 

1

2 2

2 1

1

1
( ) ( )d d

( 1) ( ) ( )

t t

T T

s Q s s M s
m R s s




  



 




  

 
   

let 
2 1

1( 1)
k

m



  



 







, hence: 

1

2

( ) ( ) d
( ) ( )

t

T

k
s Q s s M

R s s

 
    

 
  

which contradicts the fact that (13), then eq. (1) is oscillatory. 

Example. Consider the following differential equation: 

 
d 2

[ ( )] [ ( )] [ ( 2)] 0
d

z t z t t x t
t t


  


                 (14) 

Let 
1

( ) ( ) ( 1)
2

z t x t x t   , then: 

( ) 1r t  , ( ) 1t t   ,
1

( )
2

c t  ,
2

( )p t
t


 , ( )q t t , ( ) 2t t     

Let 0 1t  , then: 

2( )E t t  ,
2( )R t t  ,

1

0

2
1

1
( )d d 1,

t

R s s s
s



 


       
2

( )
2

t
Q t

 





  

2

1( )
2

t
Q t

 





 ,
2

( )
k

G t
t





 ,

1
( )t

t
    

let ρ(t) = t, we have: 

0

1

1 1

[ ( )]
limsup ( ) ( ) d

( 1) [ ( ) ( )]

t

t t

s
s Q s s

s G s

 

 

 
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 






 
  

 
  

2 1 2

1
1

limsup
2 ( 1)

t

t

s s
ds

k

    

   



 

  




 
    

 
  

1
1

1

0

2 1 2 1

2
1

1 ( )
limsup ( ) ( ) d d limsup d

( ) 2 (2 1)

t s t

t tt T

s T
Q u u u s s

R s s






 

 




 

 

  
    

  
    

Then the conditions of Theorem 1 are satisfied, then eq. (14) is oscillatory. 
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Conclusion 

This paper examines the oscillation of a class of non-linear differential equations with 

damping terms. By employing the generalized Riccati transformation technique and certain 

specialized techniques, a novel oscillation criterion for the differential equation was derived.  

The results have potential applications to non-linear oscillators [16-18] to find the criterion of 

the period motion of a non-linear vibration system, for example, MEMS systems [19-22]. 
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