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A class of fractal PDE is successfully established by He's fractal derivative in a 
fractal space, and their variational principles are obtained by the semi-inverse 
method. The Fourier-Rabbani-He method and the Ritz-like method are used to 
solve the given fractal equations with initial value conditions. The example is a 
great demonstration of how the Fourier-Rabbani-He method is a powerful and 
simple tool that can be used in different ways. 
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Introduction  

A multitude of physical procedures, both natural and artificial, in physics, chemistry, 

biology, economics, and management can be modeled by PDE. Numerous methods exist for 

solving non-linear PDE, including the homotopy perturbation method [1-3], variational itera-

tion method [4-6], integral transforms method [7-10], Taylor series method [11-13], and exp-

function method [14-16]. In recent times, the integral transforms method has gained consider-

able popularity as a means of solving differential equations. Among these, the Fourier trans-

formation [17] has demonstrated remarkable versatility, finding applications not only in 

mathematics but also in other fields such as engineering and physics. Additionally, a range of 

integral transforms methods, including the Sumudu transform [18], Mohand transform [19], 

Laplace transform [20], Natural transform [21], and He-transform [22, 23] have been ex-

plored, with their properties and applications being extensively investigated by numerous re-

searchers. It is crucial to understand that He-transform [22, 23] is a generalized integral trans-

form that encompasses the Laplace transform, Fourier transform, and other integral trans-

forms as special cases.  

In this paper, we apply a hybrid approach called the Fourier-Rabbani-He method 
(FRHM) [17], which uses the Fourier transform method and HPM to solve a class of PDE 
in the following form [24]: 

 ( , , , , ), , 0t x xxu g x t u u u x t      

 ( ,0) ( )u x h x  

This hybrid approach offers a clear advantage: it combines two powerful techniques 

to derive approximate iterative solutions of non-linear problems. This approach provides a so-
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lution in the form of a convergent series with easily computable components, without the need 

for linearization, perturbation, or restrictive assumptions. 

Modified homotopy perturbation method 

Consider a non-linear differential equation: 

 ( ( , )) ( , ) 0, ,u x t f x t x t      (1) 

 ( , ), 0,
u

u x t n
n

 
    

  (2) 

where   is a general differential operator,  – a boundary operator, and ( , )f x t – a known 

function. Operator   is decomposed into linear and non-linear operators such as L  and N, 
respectively. In the special case, linear operator L  can be decomposed into L + R, where L is 

the highest order linear differential operator and R – the remainder of that. Thus eq. (1) can be 

rewritten: 

 [ ( , )] ( , ) [ ( , )] [ ( , )] 0L u x t f x t R u x t N u x t   { } { }   (3) 

We introduce a modified homotopy perturbation (MHP) in the following form  

[25, 26]: 

 ( , ) [ ( , )] ( , ) [ ( , )] [ ( , )] 0, [0,1]H v p L v x t f x t p R v x t N v x t p     { } { }   (4) 

where v is an approximate solution of eq. (1) and we assume that v is a series in terms of 
p powers: 

 
0

( , ) ( , ) ( , )i
i

i

u x t v x t p v x t




   (5) 

The solution of eqs. (1) and (2) are 
1

( , ) lim ( , )
p

u x t v x t


. 

Fourier-Rabbani-He method 

Considering eq. (1) again, if:  

 [ ( , )] ( , )
n

n
L u x t u x t

t





 

according to the FRHM [17], taking Fourier transform of eq. (3), we have: 

 [ ( , )] [ ( , )] [ ( , )] [ ( , )] 0
n

n
u x t f x t R u x t N u x t

t

  
    

  
{ } { }   (6) 

Taking inverse Fourier transform of eq. (6), it is concluded that: 

 
1 1( , )

( , ) [ ( [ ( , )] ) ( [ ( , )] )] 0
n

n

u x t
f x t R u x t N u x t

t

 
 

    
 

{ } { }   (7) 
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We introduce a MHP: 

  
1 1( , )

( , ) ( , ) [ ( [ ( , )] ) ( [ ( , )] )]
n

n

u x t
H v p f x t p R u x t N u x t

t

 
 

    
 

{ } { }   (8) 

where v is an approximation of u and by substituting eq. (5) into eq. (8),we have: 

 

1

0 0

1

0

( , ) ( , ) ( , ) ( , )

( , )

n
i i

i in
i i

i
i

i

H v p p v x t f x t p R p v x t
t

N p v x t

 


 






        
                 

    
         

 



  (9) 

We apply Adomian decomposition method to convert [ ( , )]N v x t  to sum of some 

simple Adomian polynomials in this form: 

  
0 0

[ ( , )] ( , ) ( , )i i
i i

i i

N v x t N p v x t p A x t
 

 

 
  

 
    (10) 

where Adomian polynomials are: 

  
0 0

1
( , ) ( , )

!

i
i

i ii
i p

d
A x t N p v x t

i dp



 

   
   

   
   (11) 

Putting eq. (10) into eq. (9) and rearranging it in terms of p powers, we can give the 

following FRH-algorithm: 

 0 ( , )
( , )

n

n

v x t
f x t

t





 

 11
0 0

( , )
[ [ ( , )] ( , )

n

n

v x t
R v x t A x t

t


  


{ }  

 1
1 1

( , )
( [ ( , )] ( , ), 2,3,

n
i

i in

v x t
R v x t A x t i

t


 


   


{ }   

Application of Fourier-Rabbani-He method 

Consider the following PDE [24]: 

 t xu uu   (12) 

with the initial condition: 

 
2( ,0) 0.2u x x   (13) 

which has the exact solution: 

  
2

[1 (0.4) ] 1 (0.8)
( , )

(0.4)

tx tx
u x t

t

  
  (14) 
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In a fractal space, eq. (12) can be modified: 

 
u u

u
t x 

 


 
 (15) 

with the initial condition: 
2( ,0) 0.2u x x    (16) 

where  

 ,
u

t



 

u

x



  

are He’s fractal derivatives [27, 28] defined: 

 
0

0
0

00

( , ) ( , )
( , ) (1 ) lim

( )t t t
t

u t x u t xu
t x

t t t 


 
 


  

 
 (17) 

 
0

0
0

00

( , ) ( , )
( , ) (1 ) lim

( )x x x
x

u t x u t xu
t x

x x x 


 
 


  

 
 (18) 

Using the two-scale transform method [29, 30] to eq. (15) and assume: 

 T t   (19) 

  X x  (20) 

where x, t are for the small scale and X, T for large scale, ,  are the two-scale dimensions 

[31]. Applying eqs. (19) and (20) to eqs. (15) and (16), we have: 

 
u u

u
T X

 


 
  (21) 

with the initial condition: 

  
2( ,0) 0.2u X X   (22) 

We introduce the following operators and function: 

 

( , )
[ ( , )] , 0, ( , ) 0,

[ ( , )] ( , ) ( , )X

u X T
L u X T R f X T

t

N u X T u X T u X T


  



 

  (23) 

We get the following initial values for ( , ), 0,1,2, ,iv X T i   

 2
0( ,0) 0.2 ,v X X ( ,0) 0, 1iv X i     (24)  

From FRH-algorithm, we have: 

Step 1.  

  0 ( , )
( , ) 0

v X T
f X T

t


 


  (25) 
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From eq. (24), we set 
2

0 ( , ) 0.2 .v X T X  

Step 2. 

 
301

0 0

( , )( , )
( , ) ( , ) 0.08

v X Tv X T
A X T v X T X

t X


   

 
  (26) 

From eq. (24), we obtain 3
1( , ) 0.08 .v X T X T  

Step 3. 

 

2
1

401
0 1

( , )
( , )

( , )( , )
( , ) ( , ) 0.08

v X T
A X T

t

v X Tv X T
v X T v X T X T

X X


 




  

 

  (27) 

From eq. (24), we obtain 4 2
2( , ) 0.04 .v X T X T  

The third order iterative solution of eqs. (21) and (22) reads: 

  2 3 4 2( , ) 0.2 0.08 0.04u X T X X T X T     (28) 

The variational principle is widely used to study non-linear problems [32-39]. In or-

der to establish a variational formulation, we use the following traveling wave variable: 

  X cT     (29) 

Equation (21) is transformed into the following ODE: 

 ' ' 0cu uu     (30) 

by He's semi-inverse method [40], we can obtain the following variational formulation: 

  
2 3

0

1
( ) d

2 6

c
J u u u 


 

      (31) 

Case A. According to [41, 42], we search for a soliton solution in the form: 

 ( ) sech( )u A    (32) 

By substituting eq. (32) into eq. (31), we obtain: 

  
21
(12 )

24
J A c A    (33)  

To find the constant A,we need to solve the following equation: 

  
2 1

(12 ) 0
24 12

J A
A c A

A





   


  (34) 

From eq. (34), we obtain: 

  
8c

A


    (35) 
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Therefore, the solitary wave solutions to eq. (21) are: 

  
8

( , ) sech( )
c

u X T X cT


     (36) 

From eq. (22), we have: 

  
2 8 sech( )

( ,0) 0.2
c X

u X X


     (37) 

Therefore: 

  20.0785398 cosh( )c X X    (38) 

We have: 

  2 2( , ) 0.2 cosh( )sech[ 0.0785398 cosh( )]u X T X X X X T x    (39) 

Case B. According to [41, 42], we search for a soliton solution in the form: 

 ( ) sech( ) tanh( )u A     (40) 

By substituting eq. (40) into eq. (31), we obtain: 

  
21
(2 15 )

90
J A A c    (41)  

We solve the following equation: 

  
2 1

(2 15 ) 0
45 45

J A
A A c

A


   


  (42) 

From eq. (42), we obtain: 

  5A c    (43) 

Therefore, the solitary wave solutions to eq. (21) is: 

  ( , ) 5 sech( ) tanh( )u X T c X cT X cT      (44) 

From eq. (22), we have: 

  2( ,0) 0.2 5 sech( ) tanh( )u X X c X X     (45) 

and 

  20.04 cosh( )coth( )c X X X    (46) 

We have: 

  

2

2

2

( , ) 0.2 cosh( )coth( )

sech[ 0.04 cosh( )coth( )]

tanh[ 0.04 cosh( )coth( )]

u X T X X X

X X T x x

X X T X X







  (47) 
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Conclusion  

A class of fractal PDE is successfully established by He's fractal derivative [27, 28] 

in a fractal space, and their variational principles are obtained by the semi-inverse method 

[40]. The two-scale transform method [29, 30] and the FRHM [17] are adopted to solve the 

fractal PDE with initial value conditions. The example is a great demonstration of how the 

FRHM [17] is an incredibly simple and straightforward tool to solve initial value problems of 

PDE. The Fourier transform in the present paper can be replaced by Aboodh Transform [43], 

He Transform [22], Sumudu and Elzaki integral transforms [44], and new modifications oc-

curs.  
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