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As a complex system with multi-body interactions, the financial market functions 
in accordance with the non-linear differential dynamical system characteristics 
and properties. Although the financial market is a complex system with multiple 
constraints and perturbations, it is subject to a number of universal laws. This 
paper introduces fractional-order non-linear differential dynamical systems as a 
means of modeling and analyzing financial stability, as well as exploring the dy-
namical characteristics and large-time behavior of complex financial systems. 
Empirical simulation analysis and testing of econometrics serve to verify the sci-
entific validity of this stochastic process.  
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Introduction  

Financial markets are highly complex dynamical systems, and there is a long histori-

cal tradition of research on financial markets by scientists and technologists from different 

disciplines, including financial scientists and mathematicians [1-3]. The accumulation of vast 

quantities of economic data has rendered traditional analytical methods inadequate [4, 5] for 

the current situation of rapidly expanding data. While standard economic methods are only 

applicable to equilibrium and systems with only one type of trader, many of the more interest-

ing and important phenomena in financial markets depend on the participation of different 

types of traders and on what happens when the financial system is far from equilibrium. The 

necessity for the development of more effective methods and theories to facilitate a more pro-

found understanding of financial markets has become an urgent priority [6-9]. In recent dec-

ades, mathematicians have produced a substantial body of important results in a number of 

fields, including phase transitions, statistical mechanics, non-linear dynamics, and disordered 

systems. The analytical study of financial markets has increasingly employed concepts such 

as power law distributions, scalar behavior, correlations, and stochastic processes [10-12]. As 

traditional physical theories continued to evolve, physicists began to explore the potential of 

applying concepts and methods from physics to the study of financial market dynamics. This 

resulted in some notable successes. 

The global economic situation is undergoing a profound transformation. Global in-

vestment and trade growth rates are low, financial markets and commodity price volatility are 

high, and emerging and developed economies are gradually becoming geographically separat-

ed. Political risk is on the rise, from low to high. The economic environment is unstable, and 
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the economic situation is worrisome. Enterprises in the fast-changing economic environment 

are facing increasing uncertainty, which is leading to a rise in the number of risks and uncer-

tainties they must navigate. In the context of ever-changing, uncertain challenges and oppor-

tunities, enterprises must possess the capacity to identify and respond to emerging trends, cap-

italize on opportunities, and accelerate their development. Accordingly, we propose a non-

linear dynamical system based on fractional order and wavelet transform to investigate the re-

lationship between financial flexibility and performance [13-15]. This system will also be 

used to test and improve the regulating effect of absorptive capacity and to realize stability 

analysis and control. 

A nascent field at the nexus of mathematics and finance is financial mathematics. In 

the present era, concepts and methodologies derived from statistical physics, theoretical phys-

ics, complex systems theory, non-linear science, applied mathematics, and other disciplines 

are extensively employed in the analysis and investigation of financial markets. Financial 

physics, also known as financial mathematics, and disciplines such as econometric finance 

and stochastic process theory are all about financial markets. They are concerned with the 

analysis, prediction, and control theory of financial markets. The application of financial 

mathematics enables the examination of financial problems at the micro level, with the utilisa-

tion of concepts and models drawn from statistical physics, including those pertaining to mul-

ti-body interactions, phase and phase transitions, time-length and short-range correlations, 

multiple fractals, internal symmetry, random matrix theory and other methodologies [16]. 

Concurrently, it is possible to analyze the substantial high-frequency data present in the finan-

cial market with AI in order to explore the laws of financial dynamics. Furthermore, due to 

the existence of long-range temporal correlations and significant fluctuations in the financial 

dynamics system, we also endeavor to investigate phase transition-like phenomena and sym-

metry with the reorganization group method. 

Modeling and analysis of financial dynamics systems 

The term economic and financial cybernetics was first introduced at the World Con-

gress of Cybernetics, held in Paris in 1952. Subsequently, it began to describe the macroeco-

nomic system with second-order ODE, and discussed the problem of open-loop and closed-

loop control of the system, the use of PID control principles to improve the stability of eco-

nomic policy, and then constantly produced the optimal control problem of the macroecono-

my, the problem of establishing a national economic planning system based on the methods of 

control theory, and the modeling of economic and financial cybernetics based on the dynam-

ics of the system. 

Characteristics of economic control systems 

Modeling economic cybernetics entails ascribing a clear economic meaning to a 

range of control concepts, including: 

– The macroeconomic system is frequently subject to the uncertainties of human and eco-

nomic phenomena, and it is essentially a stochastic non-linear system. Only  

non-linear dynamics analysis can more accurately simulate the real situation, ensuring 

that the simulation results accurately reflect reality. 

– The majority of identification and modeling data are obtained through periodic sampling, 

and the available information is not sufficient, the degree of reliability is low, and serious 

noise interference should be avoided in most cases. 
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– The macroeconomic system is a large system, which is generally difficult to decompose 

accurately. Furthermore, the subsystems often have strong coupling, which causes diffi-

culties in mathematical processing. 

– The optimal control of macroeconomics is influenced by the subjective factors of decision 

makers and system analysts, and different individuals may reach disparate conclusions 

about the same system. 

– The mathematical model of the system often includes hundreds or even more mathemati-

cal equations and variables, and its non-linear model is more complex, requiring more so-

phisticated dynamics analysis. 

Modeling, analysis and control of systems 

Define the price of a financial product as P(t) at time t, where financial products 

may include stocks, securities, broad market indices, etc. The logarithmic price return for a 

time interval of t is. The logarithmic price return for a time interval of t is: 

  ( , ) ln ( ) ln ( )i i iR t t P t t P t       (1) 

The normalized return: 
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is the standard deviation of Ri. The absolute value of return ri(t) is an important form of vola-
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When p  0,1, the solution of the equation Xt is a stochastic process and almost cer-

tainly satisfies the following fractional order integral equation: 
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Let p be a real number satisfying n – 1  p  n, where n is a positive integer. Let f, g 

be functions defined on [0, ) .   Then the initial value problem for a fractional order dif-

ferential equation of Riemann-Liouville type of order p: 
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If the uncertain external interference term dC/dt is regarded only as a function of 

time t, then the fractional-order derivative Dp of the integral equation with respect to t on both 

sides simultaneously is an indeterminate process and almost necessarily satisfies the following 

estimate: 
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For 1  m  n, the fractional order derivative Dp – m on each side of the equation with 

respect to t yields: 
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Taking the limit t +  on both sides of the above equation with respect to t 

yields: 

 0( ) ,D 1,2, ,p m
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It can be verified that the integral equation satisfies exactly the fractional-order 

equation and the initial-value condition in the initial-value problem, and thus is a solution to 

the initial-value problem for fractional-order differential equations. 
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Let p be a real number satisfying 0  n – 1 < p  n, where n is a positive integer. 

Suppose f and g are functions defined on [0, ) .   When 0  m  n – 2, the mth order de-

rivative of the integral equation with respect to t on both sides gives: 
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When m = n –1, making t  +  gives:  
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which holds almost everywhere. Then we have: 
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It follows that the large time behavior of its dynamical system is stochastically sta-

ble. 

Processing of models 

The Fourier transform [17, 18] is a mathematical method that converts information 

from a time-based to a frequency-based representation. This enables the analysis of global 

frequency characteristics of information, but not local time characteristics. Although the 
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short-time Fourier transform (Gabor transform) can be employed for time-frequency analysis, 

the accuracy of this method is constrained by the size of the window. The wavelet transform 

represents a novel transform analysis method that builds upon the concept of localization in-

herent to the short-time Fourier transform. It simultaneously addresses the limitations of the 

aforementioned approach, such as the fixed size of the window, which does not adapt to vary-

ing frequencies. In discrete wavelet transform, the information is analyzed at specific scales 

and positions. This transform has higher computational efficiency than other methods while 

maintaining the same level of analysis accuracy. 

If the signal f(t) is a square-integrable function, i.e.: 
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the wavelet transform of f(t) is: 
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where a, b  R, a is the scale factor, b – the displacement factor, and a  0. The ∗ denotes tak-

ing the conjugate. Let aj = 2j, bj,k = k2j, j, k Z, replace a and b in the wavelet function a,b(t): 
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The original information can be reconstructed using wavelet inverse transformations 
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For the discrete wavelet transform, the scale function and wavelet function can be 

expressed, respectively: 
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The process of repeating the wavelet decomposition enables the analysis of the orig-

inal information at multiple resolutions, which can then be used to reconstruct the original 

signal. The Daubechies wavelet decomposition and reconstruction process allows for the ac-

quisition of both smooth approximations and detail information. 

Wavelet entropy is derived from the concept of entropy, which is utilized to quantify 

the uniformity of any kind of energy distribution in space. The greater the uniformity of ener-

gy distribution, the greater the entropy. When a system's energy is completely uniformly dis-

tributed, the entropy of that system reaches its maximum value. Wavelet entropy is a specific 

type of entropy value that is calculated by using the information obtained after wavelet de-
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composition and wavelet reconstruction. Wavelet entropy is a widely utilized analytical tool 

in the field of financial systems. 

Empirical analysis 

Numerical simulation steps 

The first step is to preprocess the data in a normalized way, using a set of random 

numbers, Ak, and normalizing them to represent the initial stochastic state of the complex sys-

tem, a process that corresponds to the values of the initial stochastic distribution of the 

weights Aki in the theoretical analysis described previously. By writing a computational pro-

gram based on the neural network toolbox in MATLAB, the system calculates the average 

Euclidean distance value, d, between Pk and Ak, in which the smallest Euclidean distance val-

ue corresponding to Ak is regarded as the distribution of the state that wins this competition, 

and the distribution of the winning state is adjusted by using the positive feedback rule, and 

the process is repeated continuously. This process is repeated until all the macroscopic pa-

rameter data sets have been input into the network for computation, and the final winning 

state distribution Ak in the competition and its corresponding aki can be obtained. The distribu-

tion value. Then the distribution value of aki is fed back into the complex system pattern k, 

and the corresponding pattern k can be derived, which realizes the pattern recognition of the 

complex system under different inputs, and further combines with the theoretical part of the 

principle of maximum entropy to obtain the evolution pattern of the complex system. By re-

flecting the changes in the conditions that occur during the evolution of the complex system to 

the macroscopic pattern data of the complex system, the results of the pattern of the complex 

system due to these changes can also be effectively found: 

Initialization. Set the initial random state A of the system, and assign any random 

value between 0 and 1 to aij (i = 1, 2. N; j = 1, 2. M). Assign an initial value to the positive 

feedback rate (0) (0  (0)  1). Determine the initial value of the neighborhood Ng(t) of 

Ng(0). Neighborhood Ng(t) is the range of the region containing several tuples centered on the 

competitive winning pattern determined in fourth step. The value of Ng(t) represents the num-

ber of tuples contained in the neighborhood at the tth feedback process. Determine the total 

number of feedbacks T. 

– Select any one of the q input modes Pk to be normalized and input into the system: 
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– Normalize the system state distribution Aj = (aj1, aj2,   ajN) and compute the Euclidean dis-

tance between jA  and :kP  
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– Find the minimum distance d, which corresponds to the distribution of the competitive 

winning system Ak : dg = min dj, j = 1, M 

– Perform system state adjustment. To correct the system mode state between all group el-

ements in the competing neighborhood Ng(t) and the input group elements: 
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where (t) is the positive feedback rate at moment t. 
– Continue to select a new input data set normalized input to the system, return to third 

step, until all the macro-parameter data sets are input. 

– Updating the positive feedback rate (t) and its neighborhood Ng(t): 

 ( ) (0)
t

t
T

    

where (0) is the initial positive feedback rate, t – the number of feedbacks, and T – the total 

number of feedbacks. 

Let the co-ordinate value of the group element g in the 2-D (or multidimensional) ar-

ray be xg, yg, then the range of the neighborhood is based on the points  

[xg + Ng(t), yg + Ng(t)] and points [xg – Ng(t), yg – Ng(t)] are squares with upper right and low-

er left corners. Its correction is:  

 1( ) int (0)g g

t
N t N

T
   

where int[x] is the rounding symbol and Ng(0) is the initial value of Ns(t). 
– Make t = t + 1, return to second step, until t = T. 

By empirical mode decomposition (EMD), the original time series X(t) can be writ-

ten as the sum of all the eigenmode functions (IMF) and residuals rse(t): 
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where n is the total number of decomposed IMF and ck(t) denotes the kth IMF. Each IMF must 

satisfy two conditions: the difference between the number of zeros and extremes of the func-

tion is less than or equal to 1 throughout the entire time range. At any point in time, the enve-

lopes of the local maxima and local minima, i.e., the upper and lower envelopes, are zero on 

average. The average value is zero. The IMF decomposed by EMD are quasi-periodic, and the 

cycle of each IMF represents the cycle of a specific type of event. 

In order to obtain the amplitude and phase time series of each IMF, we introduce the 

Hilbert transform based on the EMD decomposition: 

– Compute the conjugate pair for the kth IMF:  
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where ck is the cauchy principal value. 

– The complex conjugate function consisting of ck(t) and yk(t) can be expressed: 
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– The amplitude and phase can then have the following equation calculated: 
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Numerical simulation testing 

The stability test of variables primarily employs unit root tests to validate the 

smoothness of time series data. In the following section, we will simulate and analyze the 

original data of a financial firm. A stochastic and stable long-term relationship exists between 

the variables under study. The direct effect test of the variables is applied, followed by regres-

sion dynamics analysis to test hypotheses and the relationship of the coefficients of influence 

between the variables, tab. 1. This is done in order to construct the three types. 

Table 1. The ordinary least squares results of regression dynamics analysis 

Variant T1 T2 T3 

C 4.866***(49.034) –1.471***(–7.866) –1.567***(–8.410) 

Financial flexibilities 0.081***(4.808) 
 

0.039***(8.276) 

Shareholding concentration 
 

0.018*(2.506) 0.013*(2.063) 

Management shareholding 
 

0.115***(10.410) 0.121***(9.997) 

Board size 
 

0.009***(5.891) 0.009**(3.814) 

R2 0.229 0.323 0.329 

Adjusted R2 0.228 0.322 0.328 

Standard error of regression 7.744 6.469 6.439 

Sum squared resid 443043.700 309011.800 306171.800 

Log likelihood –25608.620 –24277.530 –24243.420 

F-statistic 219.277*** 1172.500*** 904.535*** 

Prob (F-statistic) 0.000 0.000 0.000 

*，p < 0.05；**，p < 0.01；***，p < 0.001 

Conclusions 

The empirical analysis revealed a significant positive correlation between corporate 

governance and operating performance. From the perspective of corporate governance, the 

concentration of the 2nd to 5th largest shareholders is also significantly positively correlated 

with the company operating performance. Furthermore, the company strong profitability is 

conducive to the performance of listed companies, which has a positive impact on the compa-

ny's operating performance. An improvement in a company's financial flexibility will result in 

enhanced debt capacity and liquidity, thereby enhancing the company's ability to withstand 

risks. Consequently, enhanced financial flexibility can positively impact operational perfor-

mance. Furthermore, an increase in cash flexibility and elasticity can diversify the manner in 

which a business operates, which is conducive to the realization of sustainable growth in 

business performance. 

Moreover, the empirical analysis indicates that absorptive capacity plays a positive 

role in the positive correlation between financial flexibility and firm performance. It is inevi-



Deng, Z.-H.: Analysis and Control of Financial Stability Based on … 
1792 THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1783-1792 

table that this will result in an improvement in the solvency of the company and that it will 

become easier to gain an advantage in high-risk market competition. Which has important 

reference significance for this research in exploring control strategies for financial stability, 

and various optimization methods and control theories play a crucial role [19]. 
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