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This work examines the fractal generalized Kadomtsev-Petviashvili equation, 
which describes the evolution of non-linear long waves of small amplitude. The 
fractal traveling wave transformation and the fractal semi-inverse method are 
employed to derive a fractal variational principle, which was found to be a 
strong minimum according to the He-Weierstrass function. The solution of the 
two examples is presented in the form of images. This paper demonstrates that 
the fractal dimension affects the waveform of the generalized Kadomtsev-
Petviashvili equation. 
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Introduction 

The generalized Kadomtsev-Petviashvili equation (GKPE) is a PDE that describes 

non-linear wave motion. It has been demonstrated that this system is integrable [1, 2]. It is an 

extension of the 1-D Korteweg-de Vries equation in the two spatial dimensions [3]. This ena-

bles the description of 2-D fluctuation phenomena in non-linear media in hydrodynamics and 

2-D fluctuation phenomena with weak dispersion in plasma physics. It has been the subject of 

intense study in a number of disciplines, including ocean physics [4], relativistic fluid dynam-

ics [5], condensed matter physics [6], and wave propagation [7, 8]. Initially proposed to treat 

slowly changing perturbation waves in dispersive media, KPE has been further studied in sub-

sequent studies. Ma et al. [9] developed the eKPE and derived multiple solutions and pump 

solutions. Duan [10] demonstrated the stability of lateral perturbations of non-linear acoustic 

solitary waves in dusty plasmas by KPE. Kalamvokas et al. [11] employed the inverse spec-

tral transform method to investigate the KPE. In a study conducted by Alves et al. [12], the 

existence of solitary waves in KPE was investigated through the use of variational methods 

with potential in R². 

The GKPE is a PDE that describes non-linear waves, which can be expressed as [11, 

13, 14]: 
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* Author’s e-mails: sunjianshe@126.com; sunjianshe@jzsz.edu.cn 

mailto:sunjianshe@jzsz.edu.cn


Sun, J.-S.: Fractal Solitary Wave Solutions and Variational Principle of … 
1776 THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1775-1782 

 

3

23

2

D D D
D 6

DD D D
0

D D

t x x
a

x y

  




 
  

 
   (1) 

where x and y are spatial dimensions, t – time, and a – a constant. 

In order to study GKPE in fractal space, it is necessary to introduce the concept of 

the two-scale fractal derivative [15]. In recent years, the computation of fractional order de-

rivatives has emerged as a prominent topic of research, with applications in the resolution of 

intricate mathematical and physical problems. The definition of fractal derivative, as proposed 

by Professor Ji-Huan He and further developed by his students and his colleagues [16-21], 

represents an effective tool for modeling complex mathematical or physical models in fractal 

space. The definition of He's fractal derivative is provided below: 
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The previous definition of fractal derivatives also follows the chain rule shown be-

low [22, 23]: 
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According to the definition of He's fractal derivative with its chain rule, eq. (1) can 

have the following form: 
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where x and y are spatial dimensions, t – the time, and , ,  and  represent fractional dimen-

sions [24, 25]. 

Fractal variational principle 

In this section, the fractal variational principle (FVP) [26-29] will be utilized to find 

a variational formulation of eq. (7). We introduce the following transformations [30]: 
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where u, , and w are non-zero constants and  – the fractional dimension, which will be dis-

cussed later.  

Through eq. (8), we can transform the complex PDE to get the ODE related to 
( ):  
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The integral operation on eq. (9), and ignoring the constant term, we can obtain: 
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Integrating again for eq. (10), and organizing it, we get: 
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By using the semi-inverse method [32-40], eq. (11) can be transformed to obtain the 

fractal variational formula: 
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From eq. (12), we can obtain the He-Weierstrass function [41]: 
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From eq. (13), it is clear that: 
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Equation (14) indicates that eq. (13) is a minimal FVP. 

Solitary wave solutions  

The purpose of this part is to find the solitary wave solution of eq. (12) by the ob-

tained FVP. We consider the following form [42-44]: 
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where 0,  0,q   and the values of  and q  will change as  changes. 

Combining eq. (12) with eq. (15), we will get the following expression: 
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According to He’s variational method [44], taking the partial derivatives for  and q, 

respectively, we get: 
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Solving eq. (17), we can determine the values of  and q: 
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So eq. (15) can be represented as: 
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With the fractal variational formula, the solitary wave solution of the fractal general-

ized Kadomtsev-Petviashvili equation can be approximated: 
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Two examples 

In this section, we will show two numerical examples and give the corresponding 

images to show the dynamics of eq. (21) in the space of different fractal dimensions. Consid-

ering the properties of the fractal GKPE, solitary wave solutions in single direction are con-

sidered. 

Example 1. Consider variables in eq. (21), let u = 4,  = 1, w = 3, 0 = 1,  = 1, 

 = 1,  = 1, y = 1, and a = 3. Selecting different fractional order dimension values , we ob-

tain the solitary wave solution shown in fig. 1.  

Figure 1. The 3-D images with different fractional dimension values,  
which (a) η  = 0.5, (b) η  = 0.7, (c) η  = 0.8, (d) η  = 1  
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Example 2. In this example, we use 

u = 1,  = 1, w = 3, a = 1, y = 1, t = 1. 

Take the values  = 0.1, 0.3, 0.5, 0.8, 0.9, and 1 

to represent different fractal dimensions, and 

draw 2-D graphs with different fractal dimen-

sions as in fig. 2. 

In fig. 1, we use the example in Example 
1 to draw 3-D images of isolated waves in dif-

ferent fractal dimensions. From fig. 1, we can 

see that the isolated wave receives the influence 

of different fractal dimensions, and the mor-

phology of the wave and the position of the 

wave peaks change in the same variation range. 

It is worth noting that the total variation of the 3-D image of the isolated wave becomes pro-

gressively smaller as the fractal dimension becomes progressively larger. In fig. 2 we consider 

the variation of waves in a single direction. In this case, the change of the isolated wave in a 

single dimension is more drastic as the fractal dimension increases, but the value of the wave 

peak does not change. The final result shows that the non-smooth boundary does not affect 

the peak value of the isolated wave. 

Conclusion 

In this study, we use the FVP method to obtain fractal isolated wave solutions of the 

GKPE and present them in different fractal dimensions. The FVP method is an efficient and 

simple way to deal with non-linear PDE of wave motion and to find new exact solutions for 

these non-linear evolution equations. 
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