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This paper focuses on the variational approach to a time-space fractional cou-
pled Boiti-Leon-Pempinelli equation. The fractional system can be transformed 
into the original coupled Boiti-Leon-Pempinelli equation by using the fractional 
complex transformation. The variational approach provides three new types of 
soliton solutions. 
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Introduction 

Fractional calculus has been widely used to model various types of interdisciplinary 

problems in engineering and science [1-4]. Various fractional derivatives have been proposed 

for fractional calculus, including Riesz fractional derivative, Riemann-Liouville fractional de-

rivative, Caputo fractional derivative, He's fractional derivative, and Jumarie's fractional de-

rivative and others [3-7]. Fractional PDE based on the combination of fractional derivatives 

and differential equations have received much attention in recent decades due to their effi-

ciency in modeling various phenomena in plasma physics, fluid mechanics, electrochemistry, 

optics, bioinformatics, and finance and other fields [4, 8-13]. Due to the non-local nature of 

fractional operators, it is difficult to directly obtain the exact solutions of PDE equations. Re-

cently, some analytical and numerical methods have been presented to solve linear and non-

linear fractional differential equations [6, 10, 13-16]. In this paper, we consider the following 

time-space fractional coupled Boiti-Leon-Pempinelli (BLP) equation: 
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where , , and  are given constants in (0, 1], the fractional operators:  
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are defined by He's fractional derivatives [4, 14-17]: 
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When  =  =  = 1 eq. (1) reduces to the conventional coupled BLP equation: 
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which can be used to simulate the interactions of two waves with different dispersion relations 

[18, 19]. The localized structure on the periodic background wave of the coupled BLP equa-

tion was obtained by using an object reduction in [18]. The mapping method was used to 

study the Jacobian elliptic wave structure and the periodic wave evolution behavior of (5) 

[19]. Some types of solutions of (5) have been provided in [20-24]. Explicit exact solutions of 

the coupled BLP equation were given in [20] using the extended tanh method. Feng et al. [21] 

obtained symmetry reduction solutions of the (2+1)-D BLP equation. Kumar et al. [22] ap-

plied similarity transformation method to obtain some more similarity solutions of (5). The 

Khater method was used to obtain the elliptic and solitary wave solutions [23]. The (1/G') ex-

pansion method was considered in [24] for solving the coupled BLP system, and the hyper-

bolic type solutions were further given. The study of different wave structures and solutions 

of the coupled BLP equation is useful. However, when the wave behavior of this non-linear 

equation is observed from a small time scale, or the solutions to (5) depend on the time histo-

ry, the variables may become discontinuous about the time variable. To solve this problem, 

the coupled BLP equation can be considered in fractional time space. Due to the storage prop-

erty of He's fractional derivative [4, 14, 15], we'll consider the coupled BLP equation with 

He's fractional operators. As mentioned in the previous paragraph, the non-local property and 

the complexity of the fractional operators in (1) lead to the difficulty of obtaining different 

types of solutions. To overcome this difficulty, the fractional complex transformation pro-

posed by He is used to transform (1) into the original BLP eq. (5). Different from the existing 

approaches in [18-24], the variational approach is proposed to find the soliton solutions of the 

fractionally coupled BLP equation. Through the stationary conditions from the variational 

formulations [25, 26], three new types of soliton solutions are given in detail, including bright 

soliton solution, kinky-bright soliton solution, and bright-like soliton solution. Finally, some 

conclusions are drawn. 

Fractional complex transformation  

for fractional equations 

For illustrating the efficiency of fractional complex transformation, we consider the 

fractional partial differential equation: 



Lu, J.-F., et al.: Variational Approach to Time-Space Fractional … 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 1757-1765 1759 

 

2 2 2( , , , , , , , ) 0t x y t x yf u u u u u u u      =  (6) 

where the fractional derivatives in (6) are defined by (2)-(4), and 0 , , 1     [4, 14-17]. 

The fractional complex transformation proposed by He can be formulated: 
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with three constants r, p, and q. The physical understanding of the transformations can be 

seen in [14-17, 27-31]. By (7), the fractional eq. (6) can be rewritten as an ordinary non-linear 

partial differential equation: 
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Variational approach for fractional  

coupled BLP equation 

By the following fractional complex transformation: 
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we equivalently rewrite eq. (1) as the couple BLP equation: 
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We introduce an auxiliary variable X Y cT = + −  with a constant c, and transform 

(10) as the following system: 
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By integrating the first equation of (11), and substituting the formulation of v′ and v″ 

into the second equation of (11), we have the following: 

 
3 2 22 3 0u u cu c u − − − =  (12) 

The variational formulation for (12) can be given by the semi-inverse method  

[10, 32-37], which is defined by: 
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We show that how to obtain the soliton-like solutions to (1). Three types of the soli-

ton solutions will be given by the variational principles. 

Bright soliton solution 

According to the variational theory [38, 39], the bright soliton solution to (12) is as-

sumed in the form: 

 1sec ( )u p h =    (14) 

with a unknown constant p1 determined later.  

The following variational principle can be followed by substituting (14) into (13): 
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The stationary condition for previous variational formulation can be given by: 
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which results in the following root: 
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By (15), the bright soliton solution to (12) is formulated by: 
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By the fractional complex transformation, we have the following fractional bright 

soliton solution to (1): 
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Kinky-bright soliton solution 

The kinky-bright soliton solution to (12) is given by: 

 
2
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 (20) 

where p2 is a unknown constant. 
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By (13) and (20), we have: 
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The stationary condition: 
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By (20) and (9) together with (22), we have the following fractional kinky-bright 

soliton solution: 
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Bright-like soliton solution 

Assume that the bright-like solition solution to (12) is defined by: 
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it follows that: 
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Together with (24) and (26), we obtain the following bright-like soliton solution to 

(12): 

27 21 84
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Then the fractional bright-like soliton solution to (1) can be written: 
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Numerical results 

In this section, some 3-D graphs of the obtained wave-type solutions are presented 

to show the numerical behavior of the time-space fractional coupled BLP equation. We con-

sider the parameter c = 5 and study the propagation of three types of soliton solutions. 

We first consider the bright soliton solutions to the fractionally coupled BLP eq. (1). 

Figure 1 plots the propagation of the classical BLP eq. (1) with α = β = γ = 1 at space co-ordi-

nate y = 10 or time co-ordinate t = 1. The behavior of the fractional BLP equation is different, 

the bright soliton solutions along the x and y space directions are plotted in fig. 2. The frac-

tional dimensions for the left, middle, and right sides of fig. 2 are 0.3, 0.5, and 0.8, respective-

ly. The kinky-bright soliton solutions to the classical BLP eq. (1) are shown in fig. 3, where 

the co-ordinates y = 10 and t = 1 are used in the left and right sides of fig. 2, respectively. The 

numerical results for the fractional space cases with t = 1 are shown in fig. 4. We note that the 

behavior of the kinky-bright soliton solutions is similar to that of the bright soliton solutions. 

The propagation of the bright-like soliton solutions with integer or fractional dimensions is 

shown in figs. 5 and 6. By comparing the results in these figures, the propagation behaviors 

become much more complicated and strongly non-linear as the fractional dimension ap-

proaches a small constant. 

Figure 1. Numerical behavior of bright soliton solutions to (1); (a) y = 10 and (b) t = 1 
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Figure 2. Numerical behavior of bright soliton solutions to (1) with fractional dimensions; 
(a) 0.3, (b) 0.5, and (c) 0.8 

Figure 3. Numerical behavior of kinky-bright soliton solutions to (1); (a) y = 10 and (b) t = 1 

Figure 4. Numerical behavior of kinky-bright soliton solutions to (1) with fractional dimensions; 
(a) 0.3, (b) 0.5, and (c) 0.8 

Figure 5. Numerical behavior of bright-like soliton solutions to (1); (a) y = 10 and (b) t = 1 
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Figure 6. Numerical behavior of bright-like soliton solutions to (1) with fractional dimensions; 
(a) 0.3, (b) 0.5, and (c) 0.8 

Conclusion 

The variational approach together with the fractional complex transformation has 

been successfully used to solve the time-space fractional coupled BLP equation. Compared 

with the existing results in [18-24], we have two significant improvements: the variational 

formulation was provided for the time-space fractional coupled BLP equation and some types 

of soliton solutions were obtained for this fractional system, which was not touched in the ex-

isting literatures. The variational approach presented in this paper is available for other frac-

tional non-linear PDE, and we will consider this topic in our future work. 
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