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This paper focuses on the variational approach to a time-space fractional cou-
pled Boiti-Leon-Pempinelli equation. The fractional system can be transformed
into the original coupled Boiti-Leon-Pempinelli equation by using the fractional
complex transformation. The variational approach provides three new types of
soliton solutions.
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Introduction

Fractional calculus has been widely used to model various types of interdisciplinary
problems in engineering and science [1-4]. Various fractional derivatives have been proposed
for fractional calculus, including Riesz fractional derivative, Riemann-Liouville fractional de-
rivative, Caputo fractional derivative, He's fractional derivative, and Jumarie's fractional de-
rivative and others [3-7]. Fractional PDE based on the combination of fractional derivatives
and differential equations have received much attention in recent decades due to their effi-
ciency in modeling various phenomena in plasma physics, fluid mechanics, electrochemistry,
optics, bioinformatics, and finance and other fields [4, 8-13]. Due to the non-local nature of
fractional operators, it is difficult to directly obtain the exact solutions of PDE equations. Re-
cently, some analytical and numerical methods have been presented to solve linear and non-
linear fractional differential equations [6, 10, 13-16]. In this paper, we consider the following
time-space fractional coupled Boiti-Leon-Pempinelli (BLP) equation:
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where ¢, f, and yare given constants in (0, 1], the fractional operators:
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are defined by He's fractional derivatives [4, 14-17]:
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When a=f=y=1c¢q. (1) reduces to the conventional coupled BLP equation:

Uy, = (u2 —u, )xy +2v,., (5)

v, =V, +2uv,

which can be used to simulate the interactions of two waves with different dispersion relations
[18, 19]. The localized structure on the periodic background wave of the coupled BLP equa-
tion was obtained by using an object reduction in [18]. The mapping method was used to
study the Jacobian elliptic wave structure and the periodic wave evolution behavior of (5)
[19]. Some types of solutions of (5) have been provided in [20-24]. Explicit exact solutions of
the coupled BLP equation were given in [20] using the extended tanh method. Feng et al. [21]
obtained symmetry reduction solutions of the (2+1)-D BLP equation. Kumar et al. [22] ap-
plied similarity transformation method to obtain some more similarity solutions of (5). The
Khater method was used to obtain the elliptic and solitary wave solutions [23]. The (1/G") ex-
pansion method was considered in [24] for solving the coupled BLP system, and the hyper-
bolic type solutions were further given. The study of different wave structures and solutions
of the coupled BLP equation is useful. However, when the wave behavior of this non-linear
equation is observed from a small time scale, or the solutions to (5) depend on the time histo-
ry, the variables may become discontinuous about the time variable. To solve this problem,
the coupled BLP equation can be considered in fractional time space. Due to the storage prop-
erty of He's fractional derivative [4, 14, 15], we'll consider the coupled BLP equation with
He's fractional operators. As mentioned in the previous paragraph, the non-local property and
the complexity of the fractional operators in (1) lead to the difficulty of obtaining different
types of solutions. To overcome this difficulty, the fractional complex transformation pro-
posed by He is used to transform (1) into the original BLP eq. (5). Different from the existing
approaches in [18-24], the variational approach is proposed to find the soliton solutions of the
fractionally coupled BLP equation. Through the stationary conditions from the variational
formulations [25, 26], three new types of soliton solutions are given in detail, including bright
soliton solution, kinky-bright soliton solution, and bright-like soliton solution. Finally, some
conclusions are drawn.

Fractional complex transformation
for fractional equations

For illustrating the efficiency of fractional complex transformation, we consider the
fractional partial differential equation:
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Sl g w7 ) =0 (6)
where the fractional derivatives in (6) are defined by (2)-(4), and O <, B,y <1 [4, 14-17].
The fractional complex transformation proposed by He can be formulated:
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with three constants 7, p, and ¢. The physical understanding of the transformations can be
seen in [14-17, 27-31]. By (7), the fractional eq. (6) can be rewritten as an ordinary non-linear
partial differential equation:
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Variational approach for fractional
coupled BLP equation
By the following fractional complex transformation:
a B b4
T = ! , X = * N Y = y (9)
Id+ea) ra+p Irad+y)
we equivalently rewrite eq. (1) as the couple BLP equation:
upy = (W’ —tty) yy + 2vyxx (10)

Vp =Vyy +2uvy

We introduce an auxiliary variable &= X +Y —¢T with a constant ¢, and transform
(10) as the following system:
_cun:(MZ_ur)ﬂ_'_zvm (11)
—v' =v"+ 2w’
By integrating the first equation of (11), and substituting the formulation of v' and v"
into the second equation of (11), we have the following:
u"=2u’ =3cu* —ctu=0 (12)

The variational formulation for (12) can be given by the semi-inverse method
[10, 32-37], which is defined by:

2
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We show that how to obtain the soliton-like solutions to (1). Three types of the soli-
ton solutions will be given by the variational principles.

Bright soliton solution

According to the variational theory [38, 39], the bright soliton solution to (12) is as-
sumed in the form:

u = pisech(&) (14)

with a unknown constant p; determined later.
The following variational principle can be followed by substituting (14) into (13):

T = [|-Spsech(@ann @) - pisech (&) eptsech’ @) -
0
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The stationary condition for previous variational formulation can be given by:

dJ(p) -0 (16)
dp,

which results in the following root:
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By (15), the bright soliton solution to (12) is formulated by:
9en \81c*n? —768¢ — 256 j
= -——4% sech 18
( 32 32 ©) (18)

By the fractional complex transformation, we have the following fractional bright
soliton solution to (1):

2,2 2 _ B 4 @
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Kinky-bright soliton solution
The kinky-bright soliton solution to (12) is given by:
u = pysech’ (&) (20)

where p» is a unknown constant.
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By (13) and (20), we have:
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for (21) implies that:
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By (20) and (9) together with (22), we have the following fractional kinky-bright

soliton solution:
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Bright-like soliton solution
Assume that the bright-like solition solution to (12) is defined by:

y= P3
1+ cosh(<)

By (13), we have the following formulation:
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Together with (24) and (26), we obtain the following bright-like soliton solution to

7 +\/21(:2 -84

yu=_4 B 12 7)
1+ cosh($)

(12):

Then the fractional bright-like soliton solution to (1) can be written:

7, 217 -84

1+ cosh{ x + y - }
ra+p) rd+y) r'd+ea)

Numerical results

In this section, some 3-D graphs of the obtained wave-type solutions are presented
to show the numerical behavior of the time-space fractional coupled BLP equation. We con-
sider the parameter ¢ = 5 and study the propagation of three types of soliton solutions.

We first consider the bright soliton solutions to the fractionally coupled BLP eq. (1).
Figure 1 plots the propagation of the classical BLP eq. (1) with @ = f = y =1 at space co-ordi-
nate y = 10 or time co-ordinate ¢ = 1. The behavior of the fractional BLP equation is different,
the bright soliton solutions along the x and y space directions are plotted in fig. 2. The frac-
tional dimensions for the left, middle, and right sides of fig. 2 are 0.3, 0.5, and 0.8, respective-
ly. The kinky-bright soliton solutions to the classical BLP eq. (1) are shown in fig. 3, where
the co-ordinates y = 10 and # = 1 are used in the left and right sides of fig. 2, respectively. The
numerical results for the fractional space cases with ¢ = 1 are shown in fig. 4. We note that the
behavior of the kinky-bright soliton solutions is similar to that of the bright soliton solutions.
The propagation of the bright-like soliton solutions with integer or fractional dimensions is
shown in figs. 5 and 6. By comparing the results in these figures, the propagation behaviors
become much more complicated and strongly non-linear as the fractional dimension ap-
proaches a small constant.

(a) 10

Figure 1. Numerical behavior of bright soliton solutions to (1); (a) y=10 and (b) =1
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Figure 4. Numerical behavior of kinky-bright soliton solutions to (1) with fractional d
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Figure 6. Numerical behavior of bright-like soliton solutions to (1) with fractional dimensions;
(a) 0.3, (b) 0.5, and (c) 0.8

Conclusion

The variational approach together with the fractional complex transformation has
been successfully used to solve the time-space fractional coupled BLP equation. Compared
with the existing results in [18-24], we have two significant improvements: the variational
formulation was provided for the time-space fractional coupled BLP equation and some types
of soliton solutions were obtained for this fractional system, which was not touched in the ex-
isting literatures. The variational approach presented in this paper is available for other frac-
tional non-linear PDE, and we will consider this topic in our future work.
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