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This article extends a modified generalized KdV-Burgers equation to the con-
formable fractional version with the aim of exploring novel solution structures 
and non-linear adaptive boundary control problems for fractional-order models. 
The results obtained include hyperbolic functional solutions of the fractional 
modified generalized KdV-Burgers equation and a non-linear adaptive boundary 
control law designed by attaching initial and boundary value conditions. It is 
demonstrated that the obtained hyperbolic functional solutions exhibit novel spa-
tial structures, and that the solution of the fractional initial and boundary value 
problem is globally exponential stability. 
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Introduction  

Fractional-order models have facilitated the advancement of numerous fields, as ev-

idenced by the numerous citations in the literature, and fractal calculus [1, 2] becomes a use-

ful tool for various engineering problems in human travel [3], thermal science [4], skin elec-

trical impedance [5], fractal spacetime [6], fractal moisture permeability [7], fractal electro-

chemistry [8], and fractal thermodynamics [9]. This can be attributed to the fractional/fractal 

derivatives that they are equipped with. This also presents a compelling rationale for re-

searchers to pursue the extension of traditional models to fractional-order partners, with the 

objective of achieving novel results or discoveries. Based on this starting point, Lu [10], Lu et 
al. [11], and Lu and Ma [12] studied the fractional-order versions of potential Yu-Toda-Sasa-

Fukuyama, Bogoyavlenskii, and Benjamin-Bona-Mahony equations using the fractional com-

plex transformation, the variational principle, and the homotopy perturbation method. A natu-

ral question that arises is whether the existing methods for integer-order equations can be ex-

tended to fractional differential equations. In general, the answer to this question depends not 

only on the equations being considered but also on the fractional derivatives used. For non-

linear fractional differential equations, it is often challenging, if not impossible, to solve them 

by generalizing the known analytical methods due to the complexity of their fractional deriva-
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tives. Recently, the conformable fractional derivative proposed by Khalil et al. [13] has been 

employed to extend non-linear evolution equations to fractional-order cases [14]. Moreover, 

the extended fractional-order equations can still be solved based on the traditional analytical 

methods. This is largely due to the fact that Khalil et al.’s [13] derivatives possess properties 

similar to those of classical integer-order derivatives, and Leibniz’s rule and the chain rule are 

still valid. Although the differences in the solution process are not significant, there are aston-

ishing discoveries in the fractional power law results containing spatiotemporal variables. 

These results exhibit evolution characteristics that are consistent with the actual physical 

background. These characteristics include propagation with variable speed and wave width, as 

well as asymmetric spatial solution structures. These structures are not present in integer-

order cases. Our findings indicate that variable speed propagation and asymmetric structures 

have already been observed in the deceleration propagation of anomalous diffusion in fractal 

dimensional media, the asymmetric structure of rogue waves, and the reverse tilting of soli-

tons. Wang and He found the fractional spatio-temporal relation for fractal solitary waves 

[15], and now fractal soliton theory becomes a useful mathematical tool to solitary waves 

travelling along an unsmooth boundary [16-18]. 

This article mainly focuses on two parts of work. The first task is to exactly solve 

the fractional modified generalized KdV-Burgers (MGKdV-B) equation we propose for the 

first time: 

 1 2D D D D D D D D D D D 0t x x x x x x x x x xu u u u u u                    (0 , 1)    (1) 

which is the fractional extension of the known MGKdV-B equation [19]. Here x and t are all 

real variables,  is positive integer, xD
 and tD

 are Khalil et al.’s [13] conformable frac-

tional derivatives with the domains extended from [0, ) to (–, +), 1, , , and 2 are arbi-

trary constants. The second task is to design a non-linear adaptive boundary control (ABC) 

law for eq. (1) when x  (0, 1), t  [0, +), u is real-valued function, 1, , , and 2 are all 

positive, and the initial and boundary value (IBV) conditions are taken as follows: 

 1 2(0, ) 0, D D (0, ) 0, D ( 2, ) ( ), D D ( 2, ) ( )x x x x xu t u t u t t u t t           (2) 

 0( ,0) ( )u x u x  (3) 

In 2020, Chentouf et al. [19] designed four different non-linear ABC laws for the 

similar integer-order case of the IBV problems (1)-(3). 

Exact solutions 

Through the transformation of spatiotemporal variables [20]: 

 ( ),
x t

u u k l c
 

 
 

     (4) 

where k and l are constants that we will determine later, c  is an arbitrary constant, eq. (1) can 

be written as: 
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We assume that u has a polynomial form: 

 
0

n
j

j

j

u a 


  (6) 

where  = () satisfies the following auxiliary equation [21, 22] with five special solutions 

and an arbitrary constant R: 

 
2d

d
R





    (7) 

Then the integer n can be determined as: 

 
3

1 4n n n n


       (8) 

Therefore, we have n = 3 when  = 1, or n = 1 when  = 3.  

For the case of n = 1 and  = 3, the constants a0, a1, k, and l can be determined: 
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Thus, we obtain the hyperbolic function solutions of eq. (1): 
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 (11) 

with: 
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We can see from fig. 1 that when the parameters are taken to the same values, the 

solution (11) with fractional orders has a steeper kink structure compared to the corresponding 

integer-order case. 

For the case where n = 3 and  = 1, the constants a0, a1, a2, and a3 can be determi-

ned: 
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where l is an arbitrary constant, k satisfies the algebraic equations: 
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 2 2 2 2 2
2 2 215 (3040 13 56 )( 16 ) 0k R k R            (15) 

 3 4 2 4 4 2 2 2 2 2 2
2 2 2 2 215 [369664 131 696 704 3040 ( 16 )] 0k R k R k R                 (16) 

 

Figure 1. Solution (11) with R = –1, 1 = 3, 2 = –2,5,  = 1,  = 1, c = 0; (a)  = 1/9,  = 1/3,  
and (b)  = 1,  = 1 (for color image see journal web site) 

Solving eqs. (15) and (16), we arrive at three sets of solutions for k combined with 

the constraints from , which are: 

Case 1: 
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By utilizing eqs. (4), (6), and (13)-(19), we can obtain some hyperbolic function so-

lutions of eq. (1). For example, one of these solutions reads: 
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where k and  satisfy any one of eqs. (17)-(19). In fig. 2, it can be seen that the solution (20) 

with fractional orders has symmetry about spatiotemporal variables, but the corresponding in-

teger-order case does not have such a symmetrical structure. 

 

Figure 2. Solution (20) with R = –1, L = –0.5, 1 = –3, 2 = –0,3,  = –5, c = 0; (a)  = 8/9,  = 4/5,   
and (b)  = 1,  = 1 (for color image see journal web site) 

Non-linear ABC law 

Based on the work [19], let’s start with the fractional Lyapunov function: 

 
2

0, 2

1
( ) ( , )

2
V t I u x t   (21) 

where 
0, 2

I   represents Khalil et al.’s [13] conformable fractional integral of the affected 

function with respect to the variable x in the interval [0, 2] . Then we have: 

 
0, 2

D ( ) ( D )t tV t I u u     

 1 20, 2
( D D D D D D D D D D )x x x x x x x x x xI u u u u u u                     (22) 

Directly calculating the fractional integral in eq. (22) yields: 
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 2
2 2 0, 2
D ( 2, )D D ( 2, ) (D )x x x xu t u t I u        (23) 

By considering eq. (2), it can be concluded from eq. (23) that: 

 2 2 2 2
1 2 1 20, 2 0, 2

D ( ) (D ) ( + ) ( 2, ) ( + ) ( 2, )t xV t I u u t I u u t                (24) 

where we have proposed the non-linear control law: 

 1 1 ( 2, )u t    (25) 
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2
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Suppose that the non-negative energy function E(t) has the form [19]: 
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which tells: 
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We further let: 

 
2

1 1D ( 2, ),t ru t   2
2 2D ( 2, ),t r u t  1 2( 0, 0)r r   (29) 

Taking into account eq. (24), from eq. (28), we know that for any t  0, there is: 

 
2 2

0,1D ( ) ( ) ( 2, ) 0t E t I u a b u t       (30) 

which hints E(t)  E(0) for any t  0. Thus, we arrive at the fact that the integral 
2

0, ( 2, )I u t
  

is bounded. 

It is easy to see from eqs. (21) and (24) that: 

 
2

1 2D ( ) 2 ( ) ( + ) ( 2, )t V t V t u t       
(31) 

Solving eq. (31) yields: 
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 (32) 

Therefore, we have the exponential approximation: 

 
( , ) 0,u x t  ( )t   (33) 

Then we can conclude that when u0(x) is -fractional square integrable on the inter-

val [0, 2] , under the non-linear ABC law provided by eqs. (24), (25), and (29), eq. (1) with 

the IBV conditions (2) and (3) is globally stable in [0, 2] . As an example of u0(x), we take 

it: 
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Then the -fractional integral of u0(x) can be obtained: 
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 (35) 

which is bounded for the fractional order 0   1. It shows in fig. 3 that the integral (35) de-

creases as fractional order  increases. 
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Conclusion 

We have presented the fractional 

MGKdV-B eq. (1) with conformable de-

rivatives and obtained its hyperbolic func-

tional solutions (11) and (20). These solu-

tions were combined with the IBV condi-

tions (2) and (3) to design a non-linear ABC 

law of eq. (1) through the use of eqs. (25), 

(26), and (29) for the purpose of global sta-

bility within the interval [0, 2] . When the 

parameter R  0 and R = 0, solving eq. (1) 

with the auxiliary eq. (7) is effective for 

other exact solutions in both trigonometric 

and rational forms. For the integer-order case of eq. (1), the globally stable interval [0, 1] 

has been designed in [19], which is different from the interval [0, 2]  in this article. The 

main reason for deriving such a different interval [0, 2]  can be attributed to our derivation 

of the fractional-order integral inequality 2 2

0, 2 0, 2
(D )xI u I u   . The present technology 

can be easily extended to fractional differential equations with the M-fractional derivatives 

[23] and the two-scale fractal derivatives [24-26]. 
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