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This paper considers the fractal modified Degasperis-Procesi type equation in-
volving a Beta-derivative as a generalized form of the standard ones. The ap-
proximate analytical solutions for the new model were obtained by employing the 
modified homotopy perturbation method coupled Laplace transformation, which 
is also called as He-Laplace method in literature. The presented example demon-
strates the efficacy of the applied method in solving non-linear equations. 
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Introduction  

The following modified Degasperis-Procesi (MDP) equation is employed in the 

modeling of dispersive water wave propagation, as evidenced in [1-3]. 
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This equation also serves as a model for non-linear thermal waves in cylindrical hy-

per-elastic rods [4-9]. Due to the use of the classical derivative, the model is limited in its 

ability to describe the local characteristics of a system in a discontinuous medium. 

In recent years, there has been a surge of interest in fractional and fractal derivatives 

due to their applications in various scientific, engineering, and technological fields. A consid-

erable number of authors have conducted research into non-linear differential equations in-

volving fractional and fractal derivatives. In general, the fractional derivative contains param-

eters that afford it greater flexibility than the classical derivative in modeling diverse behav-

iors [10-13]. In certain instances, this can result in more accurate models. The fractal deriva-

tive represents an extension of the traditional derivative concept, with the objective of ad-

dressing the specific characteristics of discontinuous media, for examples, the fractal convec-

tion-diffusion problem [14], fractal vibration systems [15, 16], fractal MEMS system [17-20], 

the fractal thermal conduction [21], the fractal Zhiber-Shabat oscillator [22], the fractal fluidi-

ty [23], the fractal Chen-Lee-Liu equation [24], and the fractal Boussinesq equation [25]. In 

the present study, we examine the following Cauchy problem of fractal MDP equation involv-

ing a Beta-derivative: 

–––––––––––––– 
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with initial condition:  
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where 0 , 1,   and a, b, c are constants, 0 DA
t


is the Beta-derivative operator with respect 

to time variable [26], / x   the He’s fractal derivative operator with respect to space variable 

[27].  

Equation (2) is a generalized form of the standard MDP equation. Usually, there is no 

general method to find exact solution for the non-linear PDE involving fractional derivatives 

and fractal derivatives. Thus, several analytical methods, e.g., the homotopy perturbation 

method [28-30] and the variational iteration method [31], have been applied to obtain approx-
imate solutions of such problems. Formerly, many authors have studied the approximate ana-

lytical solutions for non-linear MDP equation by using different analytical methods by the ho-

motopy perturbation method [32, 33], the Cole-Hopf method [34], the q-homotopy analysis 

method and Sumudu transform [35, 36] or the Jacobi wavelet collocation method [37]. We 
mention He’s polynomials and the He-Laplace method [38], which couples He’s ho-
motopy perturbation method and Laplace transform. Motivated by these works, in this pa-

per, we derive the approximate analytical solutions for the problem (2)-(3) by using homotopy 

perturbation transform method.  

Basic definitions and properties 

In this section, we recall some basic definitions and properties of Beta-derivative, 

Laplace transform and fractal derivative, for more details see [11, 39]. 

Definition 1. Let a  R and f:[a, )R Then Beta-derivative of f is defined: 
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for all , (0,1].t a    

If the limit of the previous exists, then we say that f is Beta-differentiable. 

Theorem 1. Let   (0,1] and assume f, g to be Beta-differentiable. Then:  
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Theorem 2. Assume that f(t) is differentiable and also Beta-differentiable. Let g(t) be 

a differentiable function, then we have: 
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Definition 2. Let f :[a, )R be a function and Beta-differentiable. Then the Beta-

integral of the function f is given: 
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Theorem 3. Let f :[a, )R be a continuous and differentiable function. Then for all 

t  a we have: 
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Definition 4. Let f :[0, )R be real valued-function. Then the Laplace trans-

form of f is defined by: 
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The following properties can be easily derived: 
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Definition 5. The He’s fractal derivative of f(x) is defined:  
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where  is relative to the two-scale fractal dimensions, reflecting the porosity [40]. 

Description of method 

To solve the problem (2)-(3), we will use He-Laplace method [38], which is to de-

compose the non-linear equation into a series linear equations by the homotopy perturbation 

method, and then the linear equations are solved by using Laplace transform. The method can 

be applied to solve a wide range of non-linear problems, see for examples [41, 42]. In litera-

ture, it was also called as the He-Laplace algorithm [43].  

In this section, to describe the solution procedure, we consider the following non-li-

near partial differential equation: 

 ( , ) ( , ) ( , )
w

Rw x t Nw x t x t
t


  


Y    (16) 

with initial condition w(x, 0) – (x), where w(x, t) is a function of x and t, R – the bounded 

linear operator, N – the general non-linear operator, which is Lipschitz continuous and (x, t) 

– the source term. 
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Employing Laplace transform on eq. (16), we obtain: 
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By (12) and (13), we get: 
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Operating the inverse Laplace transform on eq. (18), we have: 
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where (x, t) stands for the term appearing from the initial condition and the source term. 

Now, we implement the homotopy perturbation method [44]: 

 
0

( , ) ( , ) k
k

k

w x t w x t q




   (20)  

and the non-linear term can be decomposed as: 
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by using the He’s polynomials [45] Hk(w) that are given: 
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Substituting eqs. (20) and (21) into (19) gives: 

 1

0 0 0

1
( , )k k k

k t t k k

k k k

q w x t q L L q Rw q H
s

  


  

    
     

     
  F  (23) 

Equating the coefficients of like powers of q, we get: 
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and so on.  

Finally, the k-term approximate solution of (16) is: 

 0 1 1ku u u u      (27) 
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Solution of MDP equation 

In this section, we solve the problem (2)-(3) by using He-Laplace method. 

Using the two-scale transform [46, 47]: 
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and the properties of Beta-derivative and fractal derivative, eq. (2) can be converted into the 

following form:  
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and the initial condition becomes: 

 ( ,0) ( )u x X  

The two-scale transform [46, 47] is a modification of the fractional complex trans-

form [48], it is a good tool to solving fractional differential equations. It is proved that only 

when a, b, and c satisfy certain conditions, eq. (29) has exact solutions [49]. In the general 

case, we can only find approximate solutions. Next, we apply the method proposed in the last 

section to solve eq. (29). 

Firstly, taking the Laplace transform on both the sides of eq. (29), we have: 
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By (12), we get: 
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Then, operating with the Laplace inverse transform on both sides of eq. (31) gives: 
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Employing the homotopy perturbation method, we obtain: 
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where Hk, Kk, and Gk are respectively He’s polynomials of the following non-linear terms: 
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On equating the coefficients of like powers of q we get: 
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and we can find rest of the components in the similar way.  

Hence, we get the k-term approximate solutions of (29): 

 0 1 1.ku u u u    
 

Finally, by (28), we can obtain the solution of the problem (2)-(3).  

In order to elucidate the solution procedure of He-Laplace method, we give an ex-

ample. 

Taking a = 4, b  = 3, and c = 1, we consider the problem (2)-(3) in the form: 
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subject to the initial condition: 
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By eqs. (34)-(36), and (28), we can obtain: 
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and so on. 
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Thus, the approximate analytical solution is: 
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When  =  = 1 we have: 
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which is different from the solution obtained by Wazwaz in [49]. This result shows that the 

solution of the non-linear MDP equation is very sensitive to small changes in the initial condi-

tions. 

Conclusion 

The non-linear differential equation considered in this paper represents a generalized 

form of the standard MDP equation. The equation contains the Beta-derivative and fractal de-

rivative, which can be employed in discontinuous media. The approximate analytical solu-

tions for the new model were derived by employing the homotopy perturbation method and 

Laplace transform. The presented example demonstrates the efficacy of the applied method in 

solving non-linear problems, and can be a paradigm to develop new analytical method by 

coupling the homotopy perturbation method with other integral transforms, e.g., He-transform 

[50, 51]. 
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