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A coupled thermodynamic-dynamic model of a γ-type free-piston 

Stirling engine is developed using Sage software to analyze 

impedance characteristics and predict output performance by 

applying two neural network algorithms. The model accounts for 

four key thermodynamic and dynamic parameters. These parameters 

determine acoustic impedance, output power, and efficiency. The 

results show that as a charge pressure is 2.0MPa, increasing the 

porosity from 0.86 to 0.93 leads to output power and efficiency 

increased from 22.17W to 35.12 W and the efficiency increased from 

18.44% to 23.26%. At a charge pressure of 2.5MPa, as the spring 

stiffness of the piston rises from 1.0×104N/m to 1.7×104N/m, the real 

part of the acoustic impedance increases from 3.374×107Pa·s/m to 

3.384×107Pa·s/m and the virtual part of the acoustic impedance 

decreases from 1.343×107Pa·s/m to 1.320×107Pa·s/m. Furthermore, 

the study employs a CNN algorithm to predict efficiency and output 

power, comparing its performance with that of an ANN algorithm. 

The CNN model demonstrates exceptional predictive accuracy, 

achieving an R2 value above 0.99 and a mean squared error below 2. 

This study demonstrates the effectiveness of integrating deep 

learning with simulation-based modeling to enable rapid and 

accurate performance prediction, offering a scalable approach for 

the design optimization of FPSE systems in energy applications. 

Keywords: Free-piston Stirling engine; Performance analysis; 

Convolutional neural network; Acoustic impedance 

1. Introduction 

The rapid advancement of space technology, coupled with the escalating demands of 

deep space exploration missions, necessitates the development of more sophisticated and 
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high-performance space power supply systems. The free-piston Stirling generator(FPSG), 

functioning as an advanced thermal-to-electrical, can be applied as a continuous power source 

for space power generation owing to its unique characteristics, including high efficiency of 

thermoelectric conversion, low noise, high reliability, and long life[1]. The FPSG consists of a 

free-piston Stirling engine (FPSE) and a linear generator. The FPSE was developed by Dr. 

Beale in 1964[2] and received a lot of attention from countries all over the world. The FPSE 

can not only use various heat sources such as solar energy, nuclear energy[3], biomass energy, 

and radioisotope energy but also demonstrates exceptional capability in harnessing low-grade 

thermal energy sources, including industrial waste heat. Generally, the kinematic Stirling 

engines consist of three types: α-type, β-type, and γ-type[4], and since the piston and 

displacer of the γ-type FPSE are arranged in parallel, it has the advantage of simple structure. 

So the γ-type FPSE is applied in this paper. 

In recent years, researchers have focused on the analyses of the thermodynamic, 

dynamic, thermodynamic-dynamic, and performance optimization of the FPSE. Li et al.[5] 

analyzed the the performance of FPSE by building a corresponding analysis code, to couple 

the thermodynamic cycle analysis model with the mechanical motion model of the piston and 

the linear alternator characteristic model. Zare et al.[6]conducted an analytical investigation 

into FPSEs, introducing a novel approach based on practical stability theory and dynamic 

error analysis. Notably, considering vanishing disturbances and comparing the motions of the 

two pistons, alongside identifying limit cycles, led to a more accurate estimation of the 

damping coefficient range. In addition, they introduced the concept of the “ultimate bound” as 

a quantitative metric to evaluate design accuracy. The methodology shows its effectiveness in 

enhancing the predictability and performance of FPSE systems. Tavakolpour et al.[7] 

proposed an averaging-based Lyapunov method to systematically analyze the thermodynamic 

instability of FPSEs and explore the conditions for the existence of limit cycles. This method 

not only deepens the understanding of the working mechanism of FPSEs, but also provides an 

effective tool for its performance prediction and optimization design. Wu et al.[8] proposed a 

quasi-static one-dimensional numerical model with a linear generator with sensitivity analysis 

and a simi-implicit discretization algorithm of the FPSE. The predicted values of the output 

parameters of the system were similar with the design values under stable operating 

conditions, and the relative error between the expected and actual values of the output power 

was 2.66%. The accuracy of the model and the higher prediction accuracy of the FPSE output 

parameters were verified. Ahmadi et al.[9] propose a method for predicting the output power 

of a solar Stirling heat engine, which is optimized through a hybrid approach combining 

Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). This approach enhances the 

prediction accuracy by leveraging the strengths of both GA and PSO for optimization, 

enabling the neural network to better model the complex relationship between engine 

parameters and power output. The proposed model demonstrates improved performance in 

forecasting power, offering a more reliable tool for solar Stirling engine design and operation. 

Tavakolpour et al.[10] presents a multi-objective optimization of a Stirling heat engine using 

the Grey Wolf Optimizer (GWO). The algorithm effectively enhances thermal efficiency and 

output power by optimizing key engine parameters.The results reveal that GWO outperforms 

conventional algorithms in terms of convergence speed and solution accuracy.  



While existing research on FPSE mainly focuses on performance analysis and 

thermodynamic coupling, challenges remain in coupling coordination due to mechanical 

parameter mismatches between the Stirling engine and the linear alternator. This study 

introduces the concept of impedance to analyze load characteristics and optimize parameter 

matching. Meanwhile ,with the rapid advancement of artificial intelligence and deep learning 

techniques, researchers have increasingly adopted data-driven methods in combination with 

multi-objective optimization frameworks to address complex challenges involving 

high-dimensional and nonlinear datasets. Classical optimization algorithms, such as GA, PSO, 

and the GWO, have been widely used for optimizing the design and performance of 

free-piston Stirling engines and thermal-acoustic systems[9-10]. While these methods provide 

flexibility in handling nonlinear, multi-objective problems, they typically depend on accurate 

mathematical modeling and require extensive simulations to achieve convergence. Their 

performance is also highly sensitive to parameter tuning and often lacks scalability in 

large-scale design spaces. To address the limitations above, we propose a deep learning-based 

method utilizing Convolutional Neural Networks (CNN). The CNNs have gained widespread 

adoption due to their high computational efficiency, reduced reliance on manual feature 

engineering, and superior predictive performance on large-scale datasets[11]. Once trained, 

The CNN can swiftly predict output power and efficiency across various design parameters, 

eliminating the need for repeated, computationally intensive thermodynamic simulations. This 

significantly reduces the computational burden of parametric analyses and facilitates real-time 

performance evaluation. While CNNs are predominantly applied in fields such as image 

recognition, visual analytics[12], and remote sensing prediction[13], their use in forecasting 

the output power and thermal efficiency of FPSE systems remains largely unexplored. 

Furthermore, a direct comparative analysis between CNN-based models and conventional 

Artificial Neural Networks (ANN) in this specific application has yet to be thoroughly 

investigated.  

This study develops a thermodynamic-dynamic coupled model in Sage software to 

analyze the impact of four key input parameters on FPSE performance. Analyzing the change 

of these output parameters across extensive value ranges significantly increases the 

computational demand. To overcome this limitation, we proposed and implemented an 

advanced CNN model trained on simulation data to accurately predict the performance 

characteristics of the FPSE. This machine learning-based strategy effectively reduces the need 

for exhaustive numerical simulations, enhances prediction precision, and improves the overall 

efficiency of parametric studies. Simultaneously, the performance of the CNN algorithm and 

ANN algorithm in predicting output power and efficiency is systematically compared. The 

strengths and weaknesses of the two algorithms are thoroughly evaluated in terms of 

prediction accuracy, based on performance metrics such as R2 and MSE. The findings of this 

study provide a valuable theoretical foundation and technical support for the optimization and 

design of FPSE systems. 

2. Model description 

2. 1 System introduction 



Fig. 1 illustrates the schematic configuration of a γ-type free-piston Stirling generator, 

which consists of two primary subsystems: the FPSE and the linear generator. The FPSE 

subsystem incorporates three distinct working spaces (expansion, compression, and buffer 

spaces) and four key components: a heater, a regenerator, a cooler, and two moving elements 

(displacer and piston). The piston and displacer are mechanically supported by individual 

plate springs, which provide essential axial stiffness while maintaining the required freedom 

of movement in response to pressure differentials.  

 

Fig. 1 Schematic of γ-type FPSE with external load 

As shown in Fig. 1, according to Newton’s second law, the equilibrium relationship 

between the displacer and the piston is given by[3]: 
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where Ad, Ap, Ard denote the area of the displacer, piston, and displacer rod, respectively; cd 

and cp are the damping coefficients of the displacer and piston; Fload represents the 

instantaneous electromagnetic damping force on the piston, i.e. the resistance generated by 

the external load attached to the piston; md and mp are the masses of the displacer and piston; 

kd and kp are the spring stiffness of the displacer and piston; pb, pc, pe are the pressure of the 

buffer, compression, and expansion spaces, respectively; xd and xp represent the displacement 

of the displacer and the piston; 
'

dx  and 
'

px
 

represent the velocity of the displacer and the 

piston; 
''

dx  and 
''

px  represent the accelerations of the displacer and the piston.
 

2.2 Sage model 

Based on the schematic of γ-type FPSE in Fig.1, a thermodynamic-dynamic coupled 

model is built by the Sage software. The Sage software, developed by David Gedeon in 1995 

using MS-DOS[14], is a quasi-one-dimensional numerical computation tool for alternating 

flow. It is mainly used for the design and optimization of Stirling engines[15]. The Sage 

software employs a modular approach to model the various components of the FPSE, with 

Each module encapsulating the corresponding mathematical and physical equations, as well 

as empirical formulas derived from extensive experiments[16]. These modules offer 

components such as heat and pressure sources, heat exchangers, working spaces, etc. The 

appropriate interfaces are selected to connect the modules and complete the modeling 

process[17].  

The state parameters for the entire region are determined by solving the continuity, 



momentum, and energy equations for each node within the nodal region, as follows[18]: 
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where A indicates the cross-sectional area of the gas flow path; e denotes the mass energy; ρ 

denotes the density of the working gas; u indicates the fluid flow rate; F represents the 

viscous pressure gradient in the Stokes stress tensor[18]. 
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In this paper, the regenerator is of a random fiber matrix. The screen friction factor of the 

regenerator and Nusselt number for heat transfer between the regenerator and working gas is 

expressed as follows[18]: 
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The heater and cooler adopt a fin heat exchanger. The screen friction factor of the heater 

and cooler are as follows: 

0.2568
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where β indicates the regenerators’ porosity; ε is the average height of the surface irregularity. 

In the energy equation, the heat exchange per unit length, donated as Qw, between the 

working gas and the wall is produced by the heat transfer from the thin film flow of the gas 

along the wall, and it is expressed as follows: 
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where kgas denotes the thermal conductivity of the working gas; Ax represents the 

cross-sectional area per unit length of the gas region; Tw-T denotes the temperature difference 

between fluid passing through the surface and the average cross-section area.  

Fig. 2 shows the Sage model diagram. The above equations are embedded into the 



program as constraints of Sage, and appropriate components are selected for modeling. 

Meanwhile, by adjusting the different input parameters, each output parameter required by the 

FPSE system can be derived, including acoustic impedance, output power, and 

thermal-to-power efficiency. 

 

Fig. 2 The Sage model of the γ-type FPSE 

2.3 Description of the acoustic impedance 

As the core component of the FPSG system, the linear alternator undertakes the key task 

of converting thermal energy into electrical energy. Impedance, as a key system parameter, 

can reflect the energy transfer efficiency between the linear alternator and the FPSE. Through 

impedance analysis, the energy loss problem caused by mechanical parameter mismatch can 

be solved, thereby improving the output power and overall performance. At the same time, 

since the impedance characteristics directly affect the efficiency, adjusting the impedance can 

effectively optimize the integrated design of the engine and the linear alternator.  

The piston transfers the acoustic power from the engine to the alternator. According to 

the thermo-acoustic principle, the acoustic impedance Zp of the piston is defined as[19]: 
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where Pp is the pressure wave in the compression space in the FPSE, Up denotes the 

volumetric flow of the gas through the piston. 

In the Sage software, Pp and Up are represented as follows: 
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where pcos and psin denote the cosine and sine coefficients of the first harmonic of the pressure 

Fourier series; Mdotcos and Mdotsin are the cosine and sine coefficients of the first harmonic of 

the Fourier series of the mass flow rate at the negative boundary; and ρ is the density of the 

working gas. 

The output electric power We of the alternator is expressed as[20]: 
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where Ia denotes the current amplitude, and Rer denotes the external resistance. 



The linear alternator efficiency, i.e. acoustic-electric efficiency is expressed as: 
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where WF denotes the acoustic power. 

3. Deep neural networks 

To predict the performance of FPSE more accurately and efficiently, this paper adopts 

Matlab software and compares the results of the CNN algorithm to predict the output power 

and thermal-to-electric efficiency with the ANN algorithm. Through this comparative analysis, 

the advantages and disadvantages of the two algorithms are more comprehensively compared, 

thus providing a more reliable method for predicting FPSE performance. 

The ANN algorithm is a computational paradigm comprising numerous interconnected 

processing units called neurons. The input layer, serving as the network’s interface, contains a 

predefined number of neurons corresponding to the dimensionality of the input features. The 

hidden layer, which forms the core computational component of the network, performs crucial 

transformations through weighted connections and bias terms. The output layer should ideally 

hold an equal number of neurons as required and provide the final output[21]. As a 

multi-layer feed-forward neural network model in deep learning, CNN can extract spatial 

connectivity information between layers from data and represent internally relevant features. 

The CNN algorithm includes convolutional layers for feature extraction, pooling layers for 

dimensionality reduction, and fully connected layers for classification. A distinctive 

characteristic of CNN’s network architecture lies in its utilization of specialized convolution 

kernels at each layer, enabling the systematic extraction of discriminative features from 

localized regions within the input data space. Therefore, CNN is widely used for large 

amounts of data processing and accurate prediction and analysis of data with good 

generalization ability. The steps of the CNN model used to predict the dynamic performance 

of the FPSE are shown in Fig. 3. 

 

Fig. 3 The flow diagram of CNN 

For the performance evaluation of the training and testing models in CNN and ANN, 

performance evaluation indicators are completed by the coefficient of multiple determinations 

(R2), Mean-Squared Error (MSE), and Root Mean Square Error (RMSE). The above 

parameters are specified as follows: 
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where M is the number of data; t1i and t2i are the experimental and predicted values, 

respectively. Typically, R2[0,1], when R² is close to 1, it indicates a better prediction of the 

model and a better fit to the data; when R² is close to 0, it indicates a poor fit to the model. 

4. Results and discussion 

4.1 Analysis of the effects of parameters on the FPSE’s performance 

4.1.1 Effect of the piston spring stiffness 

The variation of FPSE acoustic impedance with piston spring stiffness at different charge 

pressures is illustrated in Fig. 4. At a charge pressure of 2.5MPa, as the piston spring stiffness 

increases, the real part of the acoustic impedance increases from 3.374×107Pa·s/m to 

3.384×107Pa·s/m. At a charge pressure of 3.0MPa, the real and virtual parts of the acoustic 

impedance exhibit a gradual decrease with increasing piston spring stiffness. When the spring 

stiffness is below 1.5×104N/m, the real part remains nearly constant while the virtual part 

decreases slightly.  

  

(a) The real part of acoustic impedance (b) The virtual part of acoustic impedance 

Fig. 4 Effects of charge pressure and stiffness of piston on the acoustic impedance 

The acoustic impedance of the FPSE as a function of piston spring stiffness at different 

charge pressures is shown in Fig. 5. At a charge pressure of 2.5MPa, increasing the spring 

stiffness of the piston leads to an increase in output power from 35.19 W to 64.04 W and an 

improvement in efficiency from 23.99% to 29.79%. At a charge pressure of 3.0MPa, both the 

output power and efficiency of the FPSE showed a tendency to increase and then decrease 

with the increase of the spring stiffness of the piston.  

  



(a) Output power (b) Efficiency  

Fig. 5 Effects of charge pressure and stiffness of piston on the performance 

4.1.2 Effect of the displacer spring stiffness 

Fig. 6 represents the variation of Stirling engine acoustic impedance with the spring 

stiffness of the displacer at different charge pressure conditions. As can be seen in Fig. 6(a), 

the real part of acoustic impedance shows a tendency to increase and then decrease with the 

increase of the spring stiffness of the displacer when the charge pressure is 2.0MPa, 2.5MPa, 

and 3.0MPa. As shown in Fig. 6(b), the virtual part of acoustic impedance increases as the 

spring stiffness of the displacer increases, and the growth rate decreases gradually. At a charge 

pressure of 3.0MPa, increasing the spring stiffness of the displacer from 1.15×104N/m to 

1.55×104N/m leads to an increase in the virtual part of acoustic impedance from 

7.379×106Pa·s/m3 to 1.105×107Pa·s/m3. 

  

(a) The real part of acoustic impedance (b) The virtual part of acoustic impedance 

Fig. 6 Effects of charge pressure and stiffness of displacer on the acoustic impedance 

The acoustic impedance of FPSE with the spring stiffness of the displacer at different 

charge pressures is shown in Fig. 7. Both the output power and efficiency increased linearly 

with the increase of the spring stiffness of the displacer at the charge pressures of 2.0MPa and 

2.5MPa. At a charge pressure of 2.5MPa, increasing the spring stiffness of the displacer from 

1.15×104N/m to 1.55×104N/m leads to an increase in output power from 17.71W to 60.99W, 

and an improvement in efficiency increased from 15.24% to 29.71%. 

  

(a) Output power (b) Efficiency 

Fig. 7 Effects of charge pressure and stiffness of displacer on the performance 

4.1.3 Effect of the porosity 

The variation curves of acoustic impedance with the regenerators’ porosity for FPSE at 

different charge pressures are shown in Fig. 8. As shown in the figure, the real part of acoustic 



impedance decreases with the increase of porosity, and the virtual part of acoustic impedance 

increases with the increase of porosity under different charge pressure conditions. When the 

charge pressure is 3.0MPa, the porosity increases from 0.86 to 0.93, the real part of acoustic 

impedance decreases from 2.920×107Pa·s/m to 2.666×107Pa·s/m, and the virtual part of 

acoustic impedance increases from 9.294×106Pa·s/m to 1.186×107Pa·s/m. 

  

(a) The real part of acoustic impedance (b) The virtual part of acoustic impedance 

Fig. 8 Effects of charge pressure and porosity on the acoustic impedance 

Fig. 9 represents the curve of the acoustic impedance of FPSE with porosity at different 

charge pressures. At a charge pressure is 2.0MPa, increasing the the porosity from 0.86 to 

0.93 leads to output power and efficiency increased from 22.17W to 35.12 W and the 

efficiency increased from 18.44% to 23.26%. At a charge pressure is 2.5MPa, increasing the 

the porosity leads to output power and efficiency increased from 42.78W to 51.5W. However, 

the efficiency showed a tendency to increase and then decrease with the increase of porosity, 

and the maximum value of efficiency is 27.55% when the porosity is 0.92. At higher charge 

pressures, as porosity increases, the efficiency initially improves due to reduced flow 

resistance and enhanced mass flow. However, when porosity is beyond 0.92, the regenerator’s 

heat storage and exchange capability will decrease. This leads to diminished thermal 

regeneration effectiveness and, consequently, a decline in overall efficiency.  

  

(a) Output power (b) Efficiency 

Fig. 9 Effects of charge pressure and porosity on the performance 

Figures 4 to 9 illustrate that input parameters, such as regenerator’s porosity and charge 

pressure, have a significant impact on the output power, efficiency, and acoustic impedance of 

the FPSE. However, analyzing these parameters individually across a wide range of values 

substantially increases the computational workload. To address this challenge, we developed 

and employed an advanced CNN model to learn from simulation data and accurately predict 

the FPSE’s performance metrics. This data-driven approach not only reduces the 

computational cost associated with exhaustive simulations but also improves prediction 

accuracy and enhances the efficiency of parametric analysis. As a result, it streamlines the 



optimization process and contributes to a more efficient evaluation of the FPSE’s 

thermal-to-electric performance. 

4.2 CNN and ANN analysis 

The output power, efficiency, and acoustic impedance of the FPSE are analyzed by 

varying four input parameters. The model is trained using specific parameter variations， 

with the prediction performance evaluated using ANN and CNN algorithms. A total of 203 

datasets are generated through parameter adjustments in Sage software and numerical 

simulations. Typically, 70%-80% of the data are allocated for training and 30%-20% for 

testing. In this study, 165 datasets (approximately 80%) are used for training, while 38 

datasets (approximately 20%) are reserved for testing, maintaining a training-to-testing ratio 

of 8:2[22]. The ANN and CNN algorithms are used to predict and analyze the actual values of 

output power and efficiency, and the matching relationship curves between the actual values 

and the predicted values are shown in Fig. 10 and Fig.11. A comparison of the evaluation 

metrics for the training and test sets of the two algorithms is shown in Table 1. 

Tab 1. Comparison of performance evaluation metrics under different algorithms 

 ANN algorithm CNN algorithm 

 Output power efficiency Output power efficiency 

Training-R2 0.99577 0.99650 0.9961 0.99747 

Testing-R2 0.99538 0.99330 0.99585 0.99537 

Training-MSE 2.571 0.3651 1.362 0.11191 

Testing -MSE 2.211 0.1469 1.3436 0.095805 

As can be seen from Fig. 10 and Fig.11. The R2 values obtained by the CNN algorithm 

for output power and efficiency in both the training and testing data are 0.99610, 0.99585, 

0.99747, and 0.99537, respectively. In comparison, the R2 values obtained by the ANN 

algorithm for output power and efficiency in the training and testing data are 0.99577, 

0.99538, 0.99650, and 0.99330, with all values exceeding 0.99. However, the R2 values for 

the CNN algorithm predictions are consistently higher than those of the ANN algorithm, 

indicating that the CNN algorithm provides more accurate predictions. Additionally, the MSE 

values obtained using the CNN algorithm are 1.3620, 1.3436, 0.11191, and 0.095805, 

respectively. In contrast, the MSE values for the ANN algorithm are 2.5710, 2.2111, 0.3651, 

and 0.1469, all of which meet the required standards. The CNN algorithm demonstrates 

smaller errors and more accurate predictions. 

 



  

(a) Training (b) Testing 

Fig. 10 Comparison of predicted and actual values of output power 

 

  

(a) Training (b) Testing 

Fig. 11 Comparison of predicted and actual values of efficiency  

In summary, the ANN algorithm typically requires significant computational resources 

and training time, especially when applied to large-scale datasets. In contrast, the CNN 

algorithm offer distinct advantages by autonomously extracting hierarchical features from raw 

input data. This capability not only enhances the model’s generalization performance but also 

helps reduce computational inefficiencies and potential sources of error. The CNN algorithm 

achieve superior predictive accuracy, characterized by narrower error margins and 

consistently reliable performance across test scenarios. 

5. Conclusion  

This paper establishes a thermal-dynamic coupled model of a γ-type FPSE based on 

Sage software. Through this model, the acoustic impedance and output parameters for the 

FPSE are analyzed in detail under different input parameters. The variations of the four 

different input parameters on the acoustic impedance, output power, and efficiency are 

investigated. In addition, the CNN and ANN are employed to predict the output performance 

parameters of the FPSE, and their predictive capabilities are compared. The following 

findings are as follows: 

(1)The real part of acoustic impedance decreases and then increases with the spring 

stiffness of the displacer, and the minimum value of the real part of acoustic impedance is 



2.734×107Pa·s/m. When the charge pressure is 3.0MPa, the virtual part of acoustic impedance, 

the output power, and the efficiency all increase with the increase of spring stiffness of the 

displacer. These results indicate that FPSE performance is influenced by complex interactions 

among multiple parameters. Selecting the proper spring stiffness of the displacer springs can 

significantly improve the performance of FPSE. 

(2) In this study, both ANN and CNN were employed to predict and analyze the selected 

performance parameters of the FPSE. The predictive performance of both models was evaluated 

using the MSE and the R². The results demonstrate that the CNN model achieves higher accuracy 

and reliability than the ANN model, especially in predicting output power and thermal-to-electric 

efficiency. Additionally, the CNN model consistently achieves lower MSE values than the ANN 

model, reflecting its enhanced generalization ability and superior capability in capturing the 

nonlinear relationships among design variables. These findings confirm the effectiveness of 

CNN-based modeling in delivering accurate and computationally efficient performance 

predictions, making it a valuable tool for FPSE design and optimization.  

According to the comparative analysis of the results, the CNN algorithm adopted in this 

paper demonstrates high accuracy in predicting the parameters of the FPSE. It provides solid 

theoretical support for its performance design and optimization. Meanwhile, it further reveals 

the potential advantages of the CNN algorithm in dealing with multi-parameter interactions. 

Future research will prioritize experimental validation using an existing test, enabling more 

accurate calibration of model parameters under real-world conditions. Efforts will also be 

directed toward expanding the parameter to support more comprehensive performance 

assessments and refining the model to enhance its predictive precision. The high accuracy and 

broad applicability of the proposed CNN approach will be further verified through dynamic 

performance evaluation and real-time testing scenarios. 

Nomenclature： x position, (m) 

A cross-sectional area, (m2) 'x  velocity, (m·s-1) 

dh hydraulic diameter, (m) ''x  accelerations, [m·s-2] 

f Darcy friction factor Z acoustic impedance, (Pa/(m3/s)) 

F viscous pressure gradient, (N·m-3) Greek symbols 

I current, (A) β porosity 

K total local loss coefficient η efficiency, (%) 

L heat exchanger length, (m) ρ gas density, (kg·m-3) 

Nu nusselt number Subscripts 

p pressure, (MPa) a amplitude 

P pressure wave, (Pa) b buffer space 

Pe peclet number c compression space 

Q gross input heating power of system, (W) d displacer 

R external resistance, (Ω) e expansion 

Re Reynolds number h heater 

T temperature, (K) l cooler 

u gas velocity, (m·s-1) p piston 

U amplitude of the volume flow rate rd displacer rod 

W output power, (W)    
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