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The widespread use of atomizers for fuel spraying in combustion chambers 

or water spraying for cooling purposes has made them attractive subjects for 

research. This study investigates the interaction of internal mixing high-

velocity airflow with the spray of three fluids in a pressure swirl atomizer. 

The research was conducted using the numerical solution method, supported 

by experimental data, which demonstrated good agreement between the 

simulation and experimental results. The findings revealed that adding 0.02 

kg/s of high-velocity airflow at 300 K to the spray of three liquids—namely 

water, normal heptane, and kerosene—each at a mass flow rate of 0.08 kg/s, 

reduced the fluid film thickness (T) by 79.82%, 77.36%, and 76.87%, 

respectively. This reduction subsequently resulted in a significant decrease in 

the Sauter mean diameter (SMD) by 96.99%, 96.12%, and 95.94%, 

respectively. Additionally, the results indicated that the addition of high-

velocity airflow slightly increased the spray cone angle for kerosene and 

normal heptane, but caused the water spray to collapse and move out of its 

intended pattern. The study also found that high-velocity airflow dramatically 

increased the turbulence kinetic energy (TKE) for the spray of all three 

liquids, with a more pronounced effect observed in the water spray. These 

results can guide researchers in understanding the effects of high-velocity 

airflow on spray dynamics and assist engineers in designing and 

manufacturing atomizers with optimal performance. 

Keywords: interaction, internal mix, high-velocity airflow, kerosene, normal 

heptane, fluid film thickness, SMD. 
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1. Introduction 

Pressure swirl atomizers (PSAs) are known for their reliability, cost-effectiveness, and effective 

atomization, making them widely utilized in sectors such as aircraft and rocket engines, 

pharmaceuticals, and cooling systems [1-3]. Liu et al. [4] investigated the spray characteristics of PSAs 

under varying injection pressures, while Gad et al. [5] analyzed changes in spray cone angle, 

concentration distribution, and intensity at different air-to-liquid ratios in swirling air blast atomizers. 

Garai et al. [6] studied how droplet size and velocity distribution vary in different locations within the 

spray. Musemic et al. [7] explored the effects of simple sharp-edged and Coanda deflection outlets, 

finding that high swirl decreases sheet thickness but increases energy loss at Coanda outlets. 

Bhattacharjee [8] evaluated the impact of the Weber number on the breakup of liquid spray jets, which 

was influenced by viscosity, surface tension, and gravitational forces. Martínez et al.  [9] study on Air-

Core-Liquid-Ring (ACLR) nozzle indicated that the internal flow and the external spray instabilities 

can be correlated with each other. Jing et al. [10] researched how pressure waves affect injection 

stability, using relative standard deviation (RSD) as a measurement tool, and proposed modifications 

to improve injector stability and fuel efficiency. Dianhao et al. [11] introduced a new electric injector 

featuring a controllable inflow orifice designed to enhance dynamic response and reduce cavitation and 

fuel return, thereby improving the stability of the needle valve and reducing torque imbalance. Calzada 

et al. [12] designed a hydraulic turbine based on a pressure swirl chamber using Ansys CFD, while 

Abdul Hamid et al. [13] focused on determining the optimal number and size of tangential ports for 

achieving the widest spray. Kulshreshtha et al. [14] examined the assisted pressure swirl atomizer's 

spray cone angle and penetration length under varying injection pressure differentials. Dikshitl et al. 

[15] experimentally analyzed how discharge orifice diameter, nozzle angle, and injection conditions 

affect the spray cone angle. Malý et al. [16] utilized Laser Doppler Anemometry (LDA) and high-speed 

imaging to study the spray formation process in a transparent atomizer. Jedelsky and Jicha [17] 

evaluated two atomizers with different helical swirlers to see how they affect the spray cone angle. 

Domnick et al. [18] researched internal mixing twin-fluid atomizers for cavity wax applications, and 

Gad et al. [19] looked at how geometric parameters impact the spray characteristics of air-assisted PSAs, 

noting that air assistance shifts the maximum spray concentration inward. Khani et al. conducted 

extensive studies on PSAs, exploring various configurations like tangential and spiral inlets. Through 

experimental and simulation methods, they assessed how multiple geometric parameters—such as the 

number of inlets, spiral angle, swirl chamber length, and outlet nozzle diameter—affect spray 

characteristics [20-22]. They also investigated how flow parameters, including inlet pressure, Reynolds 

number, fuel type, and temperature, influence key spray metrics like spray cone angle, Sauter Mean 

Diameter (SMD), and discharge coefficient. Their research highlighted significant effects of these 

parameters on spray characteristics [23-25]. In follow-up studies on air-blast atomizers, Khani et al. 

[26,27] analyzed spray characteristics under conditions resembling real engine operations, introducing 

a new dimensionless number for better result comparison, which enhanced the understanding of 

atomization factors and contributed to optimizing atomizer design for improved efficiency. In another 

study by [28] they improved upon a previous study conducted in the twin-fluid nozzle domain. 

The primary focus of these studies is to enhance engine efficiency, which leads to economic 

benefits such as lower fuel costs and better vehicle performance. Moreover, optimizing combustion 

processes [29, 30] can help reduce air pollution and harmful greenhouse gas emissions like carbon 
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dioxide (CO2) and methane (CH4), addressing critical environmental issues linked to climate change. 

It is essential to recognize that while combustion is a major source of these emissions, other sectors—

such as industry, agriculture, and transportation—also contribute significantly, highlighting the need 

for a comprehensive strategy to improve air quality and tackle climate challenges [31,32]. As 

researchers continue to explore combustion complexities [33,34], they are not only working on 

improving injectors and atomizers but are also considering alternative fuels and innovative combustion 

techniques that can further reduce emissions. Thus, ongoing research and development in atomizer 

technology, applicable in various military and civilian sectors including aviation, aerospace, gas 

turbines, and power generation [1-3], aims to enhance engine performance while promoting a 

sustainable future that balances economic and environmental objectives and more recent detailed 

studies in spray technology further support these goals [35-40]. 

1.1. Necessity, Objectives, and Innovative Aspects 

 In summary, by reviewing the research background in the field of pressure swirl atomizers, 

previous studies can be classified as follows: 

 Studies that mainly aimed to understand the effect of geometric parameters of the atomizer, 

including the diameter of the inlet duct, outlet orifice, and swirl chamber; the length of the 

inlet duct, outlet orifice, and swirl chamber; as well as the number of inlets, etc., on the 

spray characteristics [20-22].  

 Studies that investigated the effect of fuel and liquid flow characteristics, such as inlet pressure and 

mass flow rate of fuel, fuel density, fuel temperature, etc., on the spray parameters [23-25].  

 A handful of studies evaluated the effect of airflow on spray characteristics [1, 14, 19, 40].  

 Therefore, the existence of research gaps in this scope is quite evident and indicates the need 

for more detailed studies. The present study aims to fill one of these gaps, and its key difference 

from previous studies and its novel aspects, which are also the objectives of the present study, 

are: comparing the effects of adding high-velocity airflow to the spray of three liquids, namely 

water, kerosene and normal heptane, or in other words, the interaction of the spray of the three 

mentioned liquids with high-velocity airflow. 

2. Key Equations Related to the Spray Main Characteristics 

The provided text offers a brief summary of equations relevant to the spray parameters of 

pressure-swirl atomizers: 

According to Rizk and Lefebvre [41], a relationship is established to estimate the spray cone 

angle, taking into account geometric factors, fluid properties, and operational conditions, as described 

in equation 1: 

𝜃 = 6(
𝐷𝑠𝐷𝑜

𝐴𝑝
)0.15(

∆𝑃𝐿𝜌𝐿𝐷𝑜
2

µ𝐿
2 )0.11 (1) 

Equations 2 and 3, as suggested by Babu et al. [42], are recognized as reliable methods for 

estimating the Sauter Mean Diameter (SMD): 

                          For     ∆𝑃𝐿 < 2.8𝑀𝑃𝑎 → 𝑆𝑀𝐷 = 133
𝐹𝑁0.64291

∆𝑃𝐿
0.22565𝜌𝐿

0.3215 (2) 

                          For     ∆𝑃𝐿 > 2.8𝑀𝑃𝑎 → 𝑆𝑀𝐷 = 607
𝐹𝑁0.75344

∆𝑃𝐿
0.19936𝜌𝐿

0.3767 
(3) 

 



 

 

Equation 4 presents a mathematical estimation of the flow number (FN), while equations 5 and 

6 are widely utilized formulas for this purpose [41]:  

𝐹𝑁 =
𝑚𝐿

.

√𝜌𝐿∆𝑃𝐿

 
  

(4) 

Equation 5 relies on experimental data, while Equation 6 provides improved dimensional 

accuracy [41]: 

𝐹𝑁 = 0.395(
𝐴𝑝

0.5𝐷𝑜
1.25

𝐷𝑠
0.45

) 
(5) 

𝐹𝑁 = 0.395(
𝐴𝑝

0.5𝐷𝑜
1.25

𝐷𝑠
0.25

) 
(6) 

Additionally, the mass flow rate, an essential parameter in atomizers, can be calculated using 

Equation 7 [43]: 

 

ṁ𝐿 = 𝐶𝐷𝐴𝑂(2𝜌𝐿𝛥𝑃𝐿)0.5 (7) 

Lastly, various equations have been proposed to estimate the fluid film thickness (T), including 

equation 8 by Suyari and Lefebvre [44], which closely aligns with experimental findings: 

𝑇 = 2.7(
𝐷𝑜𝑚𝐿

. µ𝐿

𝜌𝐿∆𝑃𝐿
)0.25 (8) 

3. Design and Experimental Testing 

This section describes the design and testing of a tangentially-fed pressure-swirl atomizer, with 

a focus on its geometric measurements and operational parameters. The experimental test results are 

presented in Figure 1 and Table 1. The design process, which assumes ideal flow by neglecting viscosity 

effects, adheres to established guidelines. The atomizer operates with a fluid mass flow rate of 0.08 

kg/s, a pressure differential of 3 bar, and a spray cone angle of 90°, using kerosene as the working fluid 

which is a common fuel in various industries, including aerospace and design outcome was Do=4.4 mm, 

Ds=15.35 mm, DP=2.35 mm, Lo=3.3 mm, Ls=11.75 mm, LP=7 mm, with 4 tangential inputs which can 

be seen in Figure 2. The atomizer test was conducted with water, which is cheap and readily available, 

instead of kerosene. In the experimental setup, a Pentax PM45 pump was used to apply pressure in 

water and test of atomizer at different inlet pressures. At each inlet pressure, the amount of water 

sprayed was collected over a specific time-period, and the mass flow rate was calculated. The spray 

image was photographed at different inlet pressures with a Canon EOS R6 camera, and the spray angle 

was measured from the photographs, an example of which can be seen in Figure 5. The use of high-

speed cameras and image restoration techniques [45] can increase the accuracy of spray angle 

measurements by capturing high-resolution images. Table 1 shows the results of atomizer testing at 

various pressures, including the design pressure. In this table, an inlet pressure of 4 bar is equivalent to 

a pressure difference of 3 bar, i.e., the design pressure difference, because the spray is discharged at 

ambient pressure, which is 1 bar. The difference between the experimental test results in the design 

pressure and the design data is due to three reasons: The first and most important reason is that the 

design was based on kerosene, but the experimental test was based on water, which its density is 

significantly higher than kerosene and its viscosity is approximately half that of kerosene. Naturally, 

the higher density and lower viscosity caused the mass flow rate in the experimental test to be 

significantly higher than the design case. However, the spray angle is more affected by the geometric 



 

 

dimensions of the atomizer, so the spray angle of the experimental test is in good agreement with the 

design case (Referring to Equations 1 and 7 will help to better understand this argument). Second, the 

design was based on an ideal fluid and, the effects of viscosity were ignored. Third and last, despite the 

effort to manufacture the atomizer with high precision, its dimensions certainly have tolerances and are 

not exactly equal to the design output dimensions. In general, the results indicated that the spray cone 

angle and fluid mass flow rate initially increased with inlet pressure but later reached a saturation point. 

Further design and test details are described in [25]. 

 

Table 1. Data obtained from experimental testing. 

Pin(bar) 1.2 1.6 2 2.5 3 3.5 4 

ṁ(gr/s) 46.58 57.72 67.85 84.56 98.23 104.30 107.34 

θ(deg) 41.71 51.58 59.63 67.68 72.80 78.66 84.90 

 

Pin=4 bar                                           Pin=3 bar                                               Pin=1.2 bar 

Figure 1. Three samples from atomizer testing at different inlet pressures. 

 

4. Research Method  

Today, the use of numerical analysis methods has become an integral part of research in various 

fields due to their high accuracy and cost-effectiveness in terms of economy and time [46-49]. In this 

study, ANSYS FLUENT 18 was used for simulation.  A mesh sensitivity analysis showed that a mesh 

size of 600K provided stable numerical results so the 600K mesh was selected for numerical analysis 

to minimize computational time while maintaining result accuracy which can be seen in Figure 3. The 

RNG-k–ε turbulence model was chosen for its superior accuracy in simulating swirl flow compared to 

other models, particularly for different declination angles [50, 53]. This model effectively predicts axial 

and tangential velocity characteristics, making it suitable for swirl flows. The research used a pressure-

based approach with the volume of fluid (VOF) model to simulate two-phase flow, a common technique 

for spray simulations [54-60]. While VOF method's widespread use is attributed to its strong correlation 

with experimental results and is effective for interface tracking, it struggles with fine droplet breakup, 



 

 

necessitating the use of a specific Sauter Mean Diameter (SMD) equation derived from experimental 

tests for accurate predictions. Therefore, using equations obtained from experimental tests, such as 

equations 2 and 3, in measuring and calculating SMD will yield more accurate results. Therefore, in the 

present study considering the design pressure difference which is 3 bar, SMD was obtained using the 

equation 2. Simulations for different states including water, kerosene, and normal heptane with the same 

mass flow rate leads to different pressure differences for each state due to their differences in density 

and viscosity. By substituting the pressure differences obtained from the simulation into equations 2, 4 

and 8, the SMD, flow number, and fluid film thickness can be calculated. It is important to note that 

estimating and measuring the diameter of spray droplets is a very complex physicochemical 

phenomenon that [61-63], despite numerous studies, still requires more detailed studies [64-66]. With 

the help of the liquid volume fraction contour at the atomizer outlet, which actually shows the spray 

formation, the spray angle can be measured (as in Figure 5). The fluid film thickness and spray droplet 

size can also be measured from the liquid volume fraction contour, but it will not be very accurate 

because these parameters are extremely small and measuring them manually from the contour is hardly 

possible to produce accurate results. Key convergence criteria included maintaining residuals below 1e-

04 and achieving mass flow rate equilibrium at the inlet and outlet. The atomizer's inlets were set with 

a specified kerosene flow rate, while the outlet was defined as a pressure outlet, with stationary wall 

conditions applied to ensure smooth flow. Initial simulations with water validated the model against 

experimental data before subsequent tests with kerosene and normal heptane examined the effects of 

adding high-velocity air and its interaction with the mentioned fluids-spray. The simulation results 

shown in Figure 4 indicated the low-pressure region in the central part of the atomizer and spray, which 

caused the airflow to be sucked into the atomizer in the central part of the spray. In addition, the spray 

pattern was in the form of a hollow cone, with the highest velocity at the edges of the spray. 

 
                     a                                             b 
Figure 2. Atomizer modeling(a), and its meshing(b).                Figure 3. SMD for different mesh. 

 

Total pressure contour             Velocity magnitude contour            Kerosene volume fraction contour 

Figure 4. Some simulation results at the design point. 



 

 

5. Validation 

The accuracy of the simulation results was confirmed by the satisfactory agreement between the 

numerical solutions and the experimental data, as shown in Figure 5, which shows a sample of the 

comparison of the simulation results with the experimental test at inlet pressure of 3 bar. At this inlet 

pressure in the experimental test, the spray cone angle and the mass flow rate were 72.80o and 98.23 

gr/s, and the same parameters were in simulations 75.62o and 100.11 gr/s, indicating a good agreement 

of the simulation results with the experimental test outcomes. 

 

Figure 5. Sample of validating simulation results with experimental testing (Pin=3bar, and water 

as working fluid). 

6. Results and Discussion  

In this section, the effects of the interaction of adding internal mixing high-velocity airflow with 

the mass flow rate of 0.02 kg/s and the temperature of 300 K to the spray of water, kerosene, and normal 

heptane with the same mass flow rate of 0.08 kg/s are investigated. The reason for choosing these three 

liquids is that kerosene and normal heptane are the main components of fuels in various industries, 

including the aerospace industry, so studying them is of great importance. Although water is not a fuel, 

studying it is important for other reasons. The widespread use of water for cooling purposes and the 

fact that water is often used instead of fuel in experimental testing of atomizer because water is cheap 

and available. Another reason for choosing water for the study was to compare the difference in the 

interaction of high-velocity airflow with water and fuels. The results are presented in Figures 6-8 and 

Table 2, which indicate the significant effects of adding a high-velocity airflow on the spray of the three 

liquids. Figure 6 shows the volume fraction contours of water, kerosene, and normal heptane at the 

atomizer outlet. Comparing the label numbers of the contours in the air-mixed mode with the airless 

mode indicates that the addition of high-velocity airflow causes a significant reduction in the volume 

fraction for all three mentioned liquids, and also that the air core grows in the orifice and advances into 

the atomizer. Adding of high-velocity airflow causes the water spray to collapse and remove it from its 

proper pattern, but in the case of kerosene and normal heptane, the situation was different and the high-

velocity airflow causes a slight increase in the spray cone angle, which can be understood with Equation 

1 because Equation 1 indicates that the spray cone angle depends more on the geometric dimensions of 

the atomizer than on the flow conditions. Previous studies [25] have shown that increasing the inlet 

pressure (pressure difference inside the atomizer) up to a certain limit causes an increase in the spray 



 

 

angle, but after a kind of saturation state is created and the increase in pressure does not have a 

significant effect on the spray angle. Another important point is the range of addition of high-velocity 

airflow that causes spray collapse. The study [40] has shown that under conditions similar to the present 

study, high-velocity airflow with the mass flow rate of 0.03 kg/s causes kerosene spray collapse, while 

the present study showed that spray collapse occurs at an air mass flow rate of 0.02 kg/s. This indicates 

that due to the physicochemical characteristics such as density, viscosity, surface tension, 

intermolecular forces, etc., the water spray is more effective than the high-velocity airflow compared 

to the kerosene spray, and in other words, the interaction of water with the high-velocity airflow causes 

more severe changes. The results of Table 2 and Figure 7 confirm this and show that adding 0.02 kg/s 

of high-velocity airflow with the temperature of 300 K to the spray of three liquids including water, 

normal heptane, and kerosene with a mass flow rate of 0.08 kg/s reduces the fluid film thickness (T) by 

79.82%, 77.36%, and 76.87%, respectively, which subsequently leads to a reduction in the Suater mean 

diameter (SMD) by about 96.99%, 96.12%, and 95.94%, respectively. 

 

 
Water 

(ρ=998.2 kg/m3,µ=0.001003 

kg/(m*s), σ=0.0728 N/m, strong 

hydrogen bonding) 

Kerosene 

(ρ=780 kg/m3,µ=0.0024 kg/(m*s), 

σ=0.025~0.030 N/m, van der Waals 

forces) 

Normal Heptane 

(ρ=684 kg/m3,µ=0.000409 kg/(m*s), 

σ=0.022~0.025 N/m, van der Waals 

forces) 

Non  

Air 

 

 
 

Mixing 

Air 

 
 

Figure 6. Comparison of the volume fraction of the three liquids at the atomizer outlet for the 

case of no high-velocity airflow and adding high-velocity airflow. 

 



 

 

The results of T in Table 2 and Figure 7 indicated that for both airless and adding high-velocity 

air can be justified by comparing the viscosities of water, kerosene, and normal heptane. The increase 

in viscosity increases the adhesion of the flow to the atomizer wall and the liquid flow flows at a slower 

speed, which gradually increases as the flow layers accumulate on each other. The passage of the high-

velocity airflow over the liquid layers causes the liquid layers in contact with the airflow to move, which 

leads to a decrease in T. The changes in SMD with the addition of high-velocity airflow are complex 

and indicate that although the SMD for the spray of all three liquids decreased sharply, the intensity of 

this decrease was greater for water, again emphasizing that the effectiveness of water spray is greater 

than that of high-velocity airflow compared to kerosene and normal heptane. 

 

TABLE 2. Comparison of spray characteristics for two modes, Non Air: ṁLiquid=0.08(kg/s), 

ṁAir=0(kg/s) and Mixing Air:  ṁLiquid=0.08(kg/s), ṁAir=0.02(kg/s).  

Conditions Non Air Mixing Air Non Air Mixing Air 

Key features of the spray SMD(*10-4m) SMD(*10-4m) T(*10-4m) T(*10-4m) 

Water 4.571 0.1377 5.96 1.203 

N-heptane 4.574 0.1773 4.686 1.061 

Kerosene 4.036 0.1638 6.927 1.602 

 

         

Figure 7. Changing of spray two key characteristics in the spray of three types of fluids by 

adding high-velocity airflow. 

 

Studies have shown that the turbulent kinetic energy (TKE) in a spray has a significant effect on 

droplet size [67]. TKE primarily affects the dispersion and breakup of the liquid jet. A higher TKE can 

result in smaller droplet sizes and faster mixing of the spray with the surrounding gas, while a lower 

TKE can result in larger droplets and more localized mixing. In Figure 8, a comparison of TKE for the 

no-air and airflow conditions shows that high-velocity airflow significantly increases TKE in sprays of 

all three liquids, but the magnitude of this increase is significantly greater for water sprays, which could 

be the reason for the more dramatic reduction in water SMD with the addition of airflow, such that the 

SMD for water sprays is the lowest. The numbers on the TKE contour label for kerosene and normal 

heptane indicate that in the absence of airflow, the TKE of normal heptane is slightly higher than that 

of kerosene, but with the addition of high-velocity airflow, the TKE of both fuels reaches a nearly 

identical range, which means that the addition of high-velocity airflow increases the TKE of kerosene 



 

 

slightly more than that of normal heptane, which could explain why the SMD of kerosene is smaller 

than that of normal heptane with the addition of high-velocity airflow. 

 

                    Water 

 

                    Kerosene 

 

                  Normal Heptane 

 

Non 

Air 

 
  

Mixing 

Air 

   

Figure 8. Comparison of the turbulence kinetic energy of the three liquids at the atomizer outlet 

for the case of no high-velocity airflow and adding high-velocity airflow. 

 

In summary, the results of this section demonstrated that the adding of high-velocity airflow has 

a pronounced impact on the characteristics of all three types of sprays examined: water, kerosene, and 

normal heptane. However, it is important to note that the extent of these changes is particularly 

pronounced for the water spray. This disparity can be attributed to the differing physicochemical 

properties of the three liquids, such as their viscosity, surface tension, and volatility. These inherent 

differences influence how each liquid interacts with the high-velocity airflow, ultimately leading to 

varied outcomes in terms of spray formation, droplet size distribution, and dispersion patterns. 

Consequently, understanding these interactions is crucial for optimizing spray applications across 

different liquids in various industrial and environmental contexts. 

Conclusion 

In the present study, we investigated the interaction of internal mixing high-velocity airflow, with 

a mass flow rate of 0.02 kg/s and a temperature of 300 K, with the spray of three common fluids—

namely water, kerosene, and normal heptane—each having a mass flow rate of 0.08 kg/s in a pressure 

swirl atomizer. The main results were as follows: 

 A reduction in fluid film thickness (T) for the water, normal heptane, and kerosene sprays 

by 79.82%, 77.36%, and 76.87%, respectively. 

 A reduction in the Sauter mean diameter (SMD) for the water, normal heptane, and 

kerosene sprays by 96.99%, 96.12%, and 95.94%, respectively. 



 

 

 A slight increase in the cone angle of the kerosene and normal heptane sprays, while the 

water spray collapsed and deviated from its intended pattern. 

 A significant increase in the turbulence kinetic energy (TKE) of the spray for all three 

liquids, with a more pronounced increase observed for the water spray. 
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