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This paper examines the fascinating phenomenon of fractal convection-diffusion 
in a porous nanofiber membrane. A multi-scale artificial intelligence model has 
been developed, in which the temporal Caputo fractional derivative, the spatial 
Riesz fractional derivative, and the traditional derivative for the convection pro-
cess have been employed. The convection-diffusion process exerts a significant 
influence on the permeability of the nanofiber membrane. This paper examines 
the influence of the convection process on the permeability of the membrane. The 
findings indicate that when the fluid velocity is minimal, the diffusion process as-
sumes control. However, when a certain threshold is reached, the convection 
process assumes dominance, accelerating the permeability process. The direction 
of the fractal convection-diffusion process is predominantly influenced by the di-
rection of the fluid-flow. 
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Introduction  

The convection-diffusion process in a porous medium is a pervasive phenomenon 

across a multitude of scientific and engineering disciplines. A substantial body of literature 

has concentrated on the topic of permeability, with notable advancements being made. For 

example, Miao et al. [1] elucidated the transport mechanism of two-phase flow through po-

rous fractured media. Liu et al. [2] conducted an investigation into the primary factors influ-

encing coal seam permeability. Xiao et al. [3] made an intriguing discovery regarding oxygen 

diffusion in porous media. In a further contribution to this field of study, Liu et al. [4] exam-

ined the process of gas migration through a porous medium. Su et al. [5] provided a detailed 

explanation of the mechanism governing oil-water relative permeabilities in a low-perme-

ability reservoir. A plethora of models have emerged, including the fractal permeability model 

[6], the fractal model for gas diffusivity in porous media [7], the anomalous diffusion model 

[8], the time fractional diffusion model [9], and the fractal diffusion model for isotropic media 

[10]. Currently, fractal diffusion is employed extensively in modern science and technology, 

spanning applications in electrochemistry [11-14] and microelectromechanical (MEMS) sen-

sors [15-18]. A multi-scale artificial intelligence (AI) diffusion model [10] incorporating the 

convection effect through a nanofiber membrane can be expressed as [19]: 

–––––––––––––– 
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with the following boundary and initial conditions: 

 0,( , ) , 0C x y t T     (2) 

 0,( , ) , 0C x y t  

 

(3) 

where C is the concentration, Dc – the diffusion coefficient, u and v are the fluid velocities 

along x- and y-directions, and f – the source term. 

In this AI model, the Caputo fractional derivative and Riesz space fractional deriva-

tive are adopted, which are defined, respectively, [19]: 
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where  ,
1 , and

2 are fractional orders, which are related with the two-scale fractal dimen-

sions of the porous medium [20-22]. This multi-scale AI model can describe the memory ef-

fect in time, symmetric diffusion in isotropous nanofiber membranes, while the convection 

process is considered in a traditional way.  

There are numerous analytical methods for solving fractional differential equations, 

including the homotopy perturbation method [23-26], the variational iteration method [27-29], 

and the exp-function method [30, 31]. This paper studies eq. (1) by the variational-based nu-

merical method [32]. 

Numerical simulation 

The variational principle is widely studied in engineering [33-38], it is the theoreti-

cal bases for both analytical analysis and numerical simulation. This paper gives a variational-

based numerical approach to eq. (1), detailed discussion on the numerical algorithm was given 

in [10, 32]. Time is discretized by L1 scheme formula and space is discretized by the implicit 

finite volume method, this discretization method guarantees a fast convergence ratio [32]. 

Here we consider the case when Dc =1.0, f = 0.0001, and α = 0.1, the numerical re-

sults for different values of β, γ are illustrated in fig.1, and the evolution process is given in 

figs. 2 and 3.  

As illustrated in fig. 1, an elevated porosity (decreased values of β and γ) facilitates a 

more rapid convection diffusion process. This finding aligns with the experimental outcomes 

documented in [39]. When the porosity is equal to one, β and γ are both equal to zero, indicat-

ing that only convection occurs. Conversely, when the porosity is equal to zero, neither con-

vection nor diffusion occurs. 
Figure 2 illustrates the evolution of the concentration, demonstrating a discernible 

acceleration in the rate of change. From t = 0.01 to t = 0.05, the concentration undergoes a 

change: 
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While the concentration change from t = 0.2 to t = 20 is: 
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Figure 1. The diffusion process for different β, γ at t = 1.0, u = 1.0, and v = 1.0;  
(a) β = γ = 0.1, (b) β = γ = 0.5, and (c) β = γ = 0.99 

The rate of change in concentration from t = 0.01 to t = 0.05 is 350 times faster than 

that observed for the period from t = 0.2 to t = 20. The rapid alteration of the concentration is 

of paramount importance for the optimal design of a nanofiber membrane. Li et al. [40] have 

revealed the fractal nature of the porosity of nanofiber members in the electrospinning pro-

cess, so that the nanofiber membrane geometry becomes controllable by the bubble electro-

spinning [41-44]. For different values of α as shown as in fig. 3, a smaller α implies a faster 

evolution process with low memory effect. 

Figure 2. The evolution process with time 
(α = 0.9, and β = 0.9, γ = 0.9, u = 1.0,  
v = 1.0, and Dc = 1.0) 

Figure 3. Evolution process with different 
memory effects (γ = 0.9, β = 0.9, t = 0.001,  
u = 1.0, ν = 1.0, and Dc = 1.0)  
 

Figure 4 illustrates the impact of fluid velocity on the distribution of concentrations. 

For smaller values of u and v, for example u = v < 1.0, the convection process can be consid-

ered negligible. Conversely, as the velocity increases, for instance u = v = 20.0, the convec-

tion and diffusion processes contribute almost equally to the concentration distribution. How-

ever, when the velocity reaches a sufficiently high value, for example u = v = 100.0, the diffu-

sion process can be disregarded. 
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Figure 4. The effect of convection on the fractal diffusion process (α = 0.8, γ = 0.6, β = 0.6, t = 1.0, 
Dc = 1.0); (a) u = 0.1, v = 0.1, (b) u = 1.0, ν = 1.0, (c) u = 20.0, v = 20.0, and (d) u = 100.0, v = 100.0  

A comparison of fig. 5 with fig. 4 reveals a similar trend for convection and diffu-

sion processes, with the exception of the concentration at the center, which undergoes a 

change. The isotropic porous medium exhibits a faster evolution than that observed for the an-

isotropic ones. Figure 6 provides a clear illustration of the aforementioned differences. The di-

rection of the fluid velocity exerts an influence on the distribution of the concentration, as il-

lustrated in fig. 7. When u > v, the diffusant will undergo a more rapid convection process in 

the x-direction than in the y-direction. 
A comparison of fig. 5 with fig. 4 reveals a similar trend for convection and diffu-

sion processes, with the exception of the concentration at the center, which undergoes a 

change. The isotropic porous medium exhibits a faster evolution than that observed for the an-

isotropic ones. Figure 6 provides a clear illustration of the aforementioned differences. The di-

rection of the fluid velocity exerts an influence on the distribution of the concentration, as il-

lustrated in fig. 7. When u > v, the diffusant will undergo a more rapid convection process in 

the x-direction than in the y-direction. 
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Figure 5. The effect of convection on the fractal diffusion process (α = 0.8, β = 0.6, γ = 0.9 t = 1.0, and 
Dc = 1.0); (a) u = 0.1, ν = 0.1, (b) u = 1.0, ν = 1.0, (c) u = 20.0, ν = 20.0, and (d) u = 100.0, ν = 100.0 

Figure 6. Comparison of the evolution process between the isotropic and anisotropic porous media; 
(a) α = 0.8, γ = 0.6, β = 0.6, t = 1.0, Dc = 1.0 and (b) α = 0.8, γ = 0.9, β = 0.6, t = 1.0, Dc = 1.0  
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Discussion and conclusions 

This paper presents a numerical study of 

the fascinating phenomenon of fractal convec-

tion-diffusion within porous media. In the con-

text of the convection-diffusion problem, the 

temporal Caputo fractional derivative is em-

ployed to illustrate the evolution of the concen-

tration of the diffusant, while the spatial Riesz 

fractional derivative is utilized to represent the 

diffusion process. The traditional derivative is 

applied to the convection process. The convec-

tion-diffusion process exerts a profound impact 

on the permeability of the nanofiber membrane. 

This paper examines the impact of the convec-

tion-diffusion process on the concentration of 

diffusants. The numerical results demonstrate 

that the evolution process is significantly influenced by the porosity of the porous media. In 

the case of relatively low fluid velocity, the diffusion process assumes a dominant role. Nev-

ertheless, at a specific threshold, the convection process becomes the dominant phenomenon. 

The direction of fractal convection-diffusion of the nanofiber membrane's permeability is pre-

dominantly influenced by the direction of the fluid-fow. 
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