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This paper proposes an iterative parameter identification algorithm based on
adaptive ridge regression to establish a geometric error model for improving the
absolute positioning accuracy of the end-effector of collaborative robots. The
perturbation method is employed to establish the aforementioned model. This al-
gorithm addresses the overfitting and lack of regularization issues associated
with the least squares method under multicollinearity and high-dimensional data,
thereby enhancing the model generalization capability. A parameter redundancy
analysis was conducted on the positional error model for multi-degree-of-
freedom collaborative robots. The experimental results demonstrate that the
elimination of redundant parameters through analytical methods improves the re-
liability and accuracy of parameter identification and enhances the model ro-
bustness. In comparison to the least squares method, the proposed algorithm
demonstrates superior identification accuracy and generalization capability, re-
sulting in a notable enhancement in the absolute positioning accuracy of collabo-
rative robots through calibration.

Key words: kinematic calibration, parameter identification, error compensation,
parameter redundancy

Introduction

Collaborative robots are commonly utilized in industrial production and automated
processing due to their inherent safety, efficiency, and flexibility, particularly in contexts that
necessitate high flexibility, low production volumes, and diverse product types. The integra-
tion of human and robotic elements within a collaborative framework has the potential to en-
hance the quality and comfort of the work environment, while simultaneously addressing the
demands for low-cost, high-efficiency, and complex task automation [1, 2]. It is of paramount
importance to calibrate the robot in order to enhance the precision of its absolute positioning
capabilities [3]. However, deviations between actual and theoretical parameters are introduced
as a result of machining errors, assembly errors, and wear, which in turn reduce end-effector
pose accuracy. Geometric parameter errors account for 90% of the total error [4, 5], making
their calibration essential for positioning accuracy.

The calibration of geometric parameters based on robot kinematics comprises four
stages: the establishment of the calibration model, the measurement stage, the parameter iden-
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tification stage, and the compensation stage [6]. The Denavit-Hartenberg (DH) model is a
widely utilized approach for kinematic modeling, facilitating the acquisition of transformation
matrices through homogeneous transformations [7, 8]. However, the DH model is not without
its limitations, particularly when adjacent joints are parallel, which can result in singularities.
The MDH model addresses this issue by incorporating a rotation parameter around the Y-axis
[9]. The CPC and product of exponentials models have also been developed, but they are
complex and involve a considerable number of parameters [10, 11]. Common measurement
methods include open-loop and closed-loop approaches employing laser measurement devic-
es, co-ordinate measuring machines, and laser scanners [12-14]. Linear methods, such as the
least squares method, are susceptible to matrix singularity and the presence of redundant pa-
rameters [15, 16]. Non-linear optimization methods, on the other hand, can be complex and
prone to local optima [17, 18].

This paper puts forth a methodology for the identification of parameters and the
elimination of redundancy in multi-DoF robots. The method employs cross-validation to au-
tomatically identify the optimal regularization parameter, addressing stability and overfit-
ting issues in least squares identification and enhancing model generalizability. An analyti-
cal method for redundant parameters, including end-effector tools, ensures accuracy and ro-
bustness. The efficacy of the proposed method is corroborated by the experimental results.

Establishment of the robotic geometric model

Kinematic modeling of robots

This paper employs an improved MDH modeling method, effectively resolving the
singularity issues that arise in the DH model when adjacent joints are parallel [9]. Thus, the
homogeneous co-ordinate transformation matrix for adjacent joints of the robot is:

1T = Rot, (&;.,)Trans, (e ;)Rot, (&) Trans, (d;Rot, (4) @

where ¢;_;,d;,8_;,6 are the link twist angle, link offset, link length, and joint angle, re-
spectively, and S, — the rotational transformation around the axis.

For an N-DoF serial robot, the product of the transformations of each adjacent link
yields the transformation matrix between the base co-ordinate system and the end-effector co-
ordinate system of the robotic arm.

0 ) N1 R JP
T =%, NgT = No N1 (2)

where NOR is the rotation matrix and NOP is the position component.

Error modeling of robots

It is inevitable that robots will exhibit both geometric and non-geometric errors dur-
ing manufacturing, which will result in deviations between the end-effector pose and the
commanded pose. Empirical evidence suggests that over 90% of these errors are geometric in
nature [19, 20]. In practical calibration, the measurement of pose requires the use of high-end
equipment, whereas the measurement of position is relatively straightforward. Given the
strong coupling between position accuracy and pose accuracy, improvements in position ac-
curacy will also enhance pose accuracy. Accordingly, this paper is dedicated to an in-depth
examination of positional inaccuracies. A robot position error model is established using the
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perturbation method, wherein pose deviations are viewed as results of small translations and
rotations through differential transformation. The model construction is illustrated in fig. 1.
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Figure 1. Perturbation method error model modeling approach

Using Aa_;,Ad;, A, A6, AB; to represent the geometric parameter errors of the
links, the actual pose transformation matrix is expressed as:

FTR = Rot, (¢4 +Agy ;) Trans, (a_; +Ag_;)Rot, (8 +A8)
Trans, (d; + Ad; )Roty(,[}’, +Af) 3
Therefore, the pose transformation error at link i is:
&7 ST TR T S TA (4)

Taking the total differential of each MDH parameter in eq. (1) yields:

: i1 -t it -1 -1
d! 7T, = G T Ag;_; + o T Ad; + o1 a |+ o T A6, + o T AB, (5)
aai_l 8d, 8ai_1 66’, 8ﬂ,
By combining egs. (4) and (5):
i i S[&,] o
LR R ©)

where &; and d; represent the differential translation and rotational motion vectors, respec-
tively, and S[&;] is the antisymmetric matrix with respect to &; . This definition will be used
throughout the following text.



Kang, Y., et al.: Robot Parameter Identification and Redundancy Analysis Based on ...
2098 THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 2095-2104

Arranging the terms of eq. (6) into the vector form of differential motion yields:

[dx ] [chcd -sp ~dcfsa O O] -
dy; -s¢ 0  —dicq 0o of *
Ad,
dz; spcd cp  —-dspsé 0 0
g = i_ :B| i ﬂl i ﬁl i Aai_l _ MiAXi (7)
% 0 0 ched -sp O )
3Y; 0 0 -s6, 0 1 Aﬁl
16| | O 0 sB.co. cg 0f- -

where M, :[Ma.,l Mg M, My M A],and g; represent the pose error vector of the
joint co-ordinate system caused by the geometric parameter error AX;.

Due to inevitable errors introduced during the installation and manufacturing of the
end-effector tool, the impact of tool parameter errors needs to be considered. It is usually stip-
ulated that the pose of the end-effector tool co-ordinate system aligns with the robot flange
co-ordinate system, i.e., the rotation matrix YR=1.Let 'P =[x y; z X ry, rz], similar to
the derivation in eq. (7), be:

e, = M|AX, = AX, ®)

According to the principle of robot differential transformation [21], the same differ-
ential motion in different reference co-ordinate systems is represented as A, = (T) ™A 1 T .
Arranging the A, terms into the vector form of differential motion yields:

.| 'R =IRS[IP]|[d;
ta _ i|_|i i t i
wLals

where ‘e, represents the differential motion caused by the parameter error of the i link, prop-
agated to the end-effector co-ordinate system.
Therefore, the robot position error model is described as:

1,2..Nt ) 1,2..Nt
e, =[PR 0]'e= > [IR IRS[PIMiAX; = > PIAX (10)
i=1 i=1

where PJ, represents the position identification Jacobian matrix of the robotic arm.
Redundancy analysis and parameter identification

Analysis of parameter redundancy

When the error model contains a substantial number of superfluous parameters, the
identification Jacobian matrix becomes non-full rank, thereby causing the condition number
of the equation to approach infinity. Consequently, it is of paramount importance to conduct a
redundancy analysis of the error model and eliminate any redundant parameters in order to
enhance the accuracy and robustness of parameter identification. Starting with the configura-
tion of the identification Jacobian matrix, analyzing eq. (10) by substituting M;, M, , and the
nominal value S =0, the coefficient arrays are:
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"Iy, P R[ca —sq o], P3, =PR[0 0 1, "3, =-CR[IR, iR 0

Py 0 [ i [ i i
3, =PR[-dist ~{ P,st —~dict -\ Pco {P,ch + Pst | (11)
: -
P‘J,Bi :_?R[_;Pz 0 ;Px:|

Py, =PJ_ = (12)

t

[P, "3y, P3| RI, PO, =

In the case of serial robots, an analysis of the identification Jacobian matrix of adja-
cent joint co-ordinate systems is sufficient to identify all redundant parameters. It is thus nec-
essary to analyse the redundancy between both similar and different types of parameters. The
properties of rotation matrix multiplication and invertibility are employed to rewrite the iden-
tification arrays of adjacent links, eliminating equal parts, resulting in a linearly related array
for the MDH error model that includes tool parameters. The linear related arrays and their
corresponding redundant parameters are summarized in tab. 1.

Ye Y,

Table 1. The MDH error redundant parameter table with tool parameters

Constraints Linear relationships Redundant parameters
N Pl =3y =73, =0 Arx, , Ary, , Arz,
one
Pa, =PJq, Az, or Ady
S @ 1=0 of & =180" Pag =234, Ad,
D
& =+90" and P, =%"J ABy_, OF AB
o an_p =330 and ay_, =0 O, =F 95, N-1 N-2
2
5 X =Y, =0 Py, =0 Aby
=
X =Yy, =0 and ay_, =+90" P, =F(dy+2)"dy Aay 4, OF Ady 4
x =y, =0and ay ,=%90", ay ;=0 Pa,  =+(dy +2)"J, ABy_, OF Aay

Iterative parameter identification based on adaptive ridge regression

At present, the most frequently employed methodology for parameter identification is
the least squares method [22, 23]. This method is relatively straightforward and efficient, but its
effectiveness is contingent upon the initial values selected. If these values are not optimal, the
method may result in local convergence, potentially influencing the identification outcomes.
Furthermore, the method is susceptible to issues when confronted with multicollinearity and
high-dimensional data, which can easily result in overfitting. To address these issues, this paper
proposes an adaptive ridge regression iterative algorithm for robot geometric parameter identifi-
cation. The algorithm selects the optimal regularization parameter through cross-validation,
combining the regularization properties of ridge regression with the model evaluation capabili-
ties of cross-validation to improve generalization performance and prevent overfitting.

min(l3aX —e|" + 2[aX) (13)

where A|AX |} is the regularization term and 4 is the regularization parameter.
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To select the optimal A, cross-validation is used for evaluation. This paper employs
k-fold cross-validation, which includes four steps: partitioning subsets, training and valida-
tion, calculating the performance metric for k-fold cross-validation, and selecting the regulari-
zation parameter with the best performance. The entire iterative process for robot parameter
identification is shown in fig. 2.
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Figure 2. Flowchart of iterative parameter identification based on adaptive ridge regression

Parameter identification based
on adaptive ridge regression

1 +

Experiment and results analysis

The six-DoF collaborative robot JAKA ZU18 is used as the research object in this
paper to validate the described redundancy parameter elimination and iterative parameter
identification algorithm. The nominal geometric parameters of the collaborative robot are
shown in tab. 2.

Referencing tabs. 1 and 2, redundancy analysis of the model indicates that the re-
dundant parameter Arx,,Ary,,Arz,, Az, Ads, Ad, , Ao, A, AG; , AGs needs to be eliminat-
ed. The number of error parameters to be identified decreases from 32 to 22.

To validate the effectiveness of the robot error model, the elimination of redundant
parameters, and the performance of the proposed iterative parameter identification algorithm,
the following experiment was designed:

— Preset the geometric parameter errors of the collaborative robot according to the error
model.
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Based on the joint angle range in tab. 2, randomly sample 40 sets of joint angles that meet
the error model identification conditions n >k/3.

Substitute the nominal geometric parameters and joint angle samples from tab. 2 into the
kinematic model to calculate the nominal end-effector positions. Then, modify the nomi-
nal geometric parameters using the preset geometric errors as the actual geometric param-
eters to calculate the actual positioning positions.

Perform iterative identification of geometric parameter errors using both the least squares
method and the adaptive ridge regression iterative algorithm. Consider two scenarios: one
including all error parameters and the other excluding redundant parameters. Use the
identification results to correct the kinematic model, then randomly select 20 spatial
measurement points to calculate the positioning error after geometric parameter calibra-
tion to assess the accuracy of the algorithms.

Table 2. Nominal geometric parameters of the collaborative robot

Joint number ai-1 [mm] di [mm] ai1 [°] 0i [°] Bi[°] Joint range [°]

1 0 142.65 0 h - —360~360
2 0 -181.65 90 02 - —85~265
3 510 0 0 1] 0 -175~175
4 400 27.65 0 04 0 —85~265
5 0 115 90 05 - —360~360
6 0 103.5 -90 66 - —360~360
t xt=0,yt=0,z2=15 Xe=0,ryt=0,rzx=0

Using the least squares method, perform identification and calibration for both cas-

es: one with all error parameters and one with redundant parameters removed, as shown in
figs. 3 and 4. The results of iterative identification and calibration using the adaptive ridge re-
gression algorithm are shown in figs. 5 and 6, and tab. 3.
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Figure 3. Least squares calibration results Figure 4. Least squares calibration results

with all parameters with redundant parameters removed
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Table 3. Calibration results of the collaborative robot arm based on adaptive ridge regression

Calibration results Calibration results
including all parameters with redundant parameters removed
Maximum error | Mean absolute error Maximum error Mean absolute error

Before After Before After Before After Before After

AX 4.1749 | -0.00374 | 1.3808 | 0.0019 4.4971 | 0.001815 | 2.0510 |0.00068843
Ay -4.0525| -0.00397 | 1.8824 | 0.0019 3.5381 | -0.00148 | 2.0157 |0.0006591
Az 2.9364 | —-0.00418 | 1.0735 | 0.0028 2.9364 | -0.00148 | 1.2024 |0.0005182

JAC + Ay? + AZ% [22.2867| 2.154-10°5 | 9.6469 |1.842-10°5| 28.8381 |3.582-10°% 13.1706 | 1.774-10°6

The experimental results demonstrate that the iterative identification results of the
least squares method are compromised when redundant parameters are not removed. This
leads to significant end-effector positioning errors after calibration. This is due to the presence
of numerous linearly related arrays in the identification Jacobian matrix, which results in a
large condition number and model instability. Following the removal of redundant parame-
ters, the identification and calibration accuracy of the least squares method exhibited a notable
improvement, with the mean absolute error decreasing from 10.3727 mm to 1.4907 x 10
mm. The proposed iterative parameter identification method demonstrates efficacy even in the
presence of redundant parameters, exhibiting enhanced generalization, stability, and robust-
ness, as well as reduced overfitting. This is achieved through the automatic selection of regu-
larization parameters, which enhances the model adaptability. The maximum calibration error
decreased from 22.2867 mm to 2.154 x 107> mm, and the mean absolute error decreased from
9.6469 mm to 1.842 x 10~ mm. Following the removal of redundant parameters, the calibra-
tion values are found to be approximately equal to those of the least squares method, thereby
confirming the effectiveness of the redundancy elimination process. The maximum error de-
creased from 28.8381 mm to 3.582 x 10~ mm, and the mean absolute error decreased from
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13.1706 mm to 1.774 x 10~ mm. In summary, the performance of the proposed method is su-
perior to that of the least squares method.

Conclusion

The study established a robot error model using the perturbation method and provid-
ed an analytical method for eliminating redundant parameters. The adaptive ridge regression
iterative identification algorithm was employed to enhance the parameter identification and
calibration of collaborative robots. The experimental results demonstrated that the least
squares method was unable to achieve successful calibration outcomes when redundant pa-
rameters were not eliminated. The proposed iterative parameter identification method demon-
strated satisfactory performance even in the presence of redundant parameters and exhibited a
notable improvement in calibration accuracy following their removal. This validates the sta-
bility and robustness of the proposed method in addressing multicollinearity issues, demon-
strating superior generalization capability and adaptability.
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