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The aim of this paper is to derive approximations for the block numerical range 
of unbounded block operator matrices that are block dominant. To illustrate our 
approach, we calculate the quartic numerical range of a concrete Hamiltonian 
operator matrix.  
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Introduction 

The spectra of linear operators play a pivotal role in numerous branches of mathe-

matics and thermal science. In the context of numerical simulation, a complex heat equation 

can be recast as a spectral problem. The conventional methodology for determining the spec-

trum of a linear operator is through the numerical range, as elucidated in [1, 2]. In [3, 4], the 

notion of quadratic numerical range was introduced, which may provide a more precise local-

ization of the spectrum than the usual numerical range. In Muhammad and Marletta [5], the 

quadratic numerical range of a finite block matrix was approximated by projection methods. 

This concept was subsequently generalized to the block numerical range in [6]. The refine-

ment of the decomposition of the space allows for the block numerical range to provide a 

more precise localization of the spectrum than the usual numerical range. In Yu et al. [7], the 

approximations of the block numerical range of unbounded block operator matrices were es-

tablished, classified as either diagonally dominant or off-diagonally dominant. 

In Salemi et al. [8], the authors introduced two novel concepts: total decomposition 

and estimable decomposition. An estimable decomposition permits the approximation of the 

spectrum of a block operator matrix by its block numerical ranges. Nevertheless, the existence 

of an estimable decomposition is, in general, challenging to ascertain. Furthermore, numerical 

approximations for the spectra may be unreliable, particularly in the case of an operator that is 

not self-adjoint or normal. 

This paper was motivated by an attempt to enhance one's comprehension of the 

block numerical range. We investigate the potential of projection methods for computing the 

block numerical range, which reduces the problem to that of computing the block numerical 

range of a finite block matrix. In the case of an unbounded block operator matrix, it is as-
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sumed that it is block dominant. The Hamiltonian operator matrix is a non-self-adjoint opera-

tor matrix derived from a linear Hamiltonian system, with a rich history in mechanics. From 

the perspective of numerical analysis, an understanding of the block numerical range of the 

Hamiltonian operator matrix can assist in estimating the location of its spectrum. A substan-

tial body of literature exists on the spectral properties of Hamiltonian operator matrices. For 

further reading, please refer to [9-13] and the references therein. 

Preliminaries 

Let be a Hilbert space. For an unbounded linear operator  which admits a 

so-called block operator matrix representation: 

 

11 1

1

:

n

n nn

A A

A A

 
 

  
 
 

 (1) 

where :ij j iA   is closable operators with dense domains ( , 1, , ).ij j i j n    We 

always suppose that  with its natural domain 1( ) : ,n    where 

1

: ( , 1, , )
n

j ij j

i

i j n


    is also densely defined. 

Remark 1 It should be noted that, unlike bounded operators, unbounded linear opera-

tors, in general, do not admit a matrix representation (1), with respect to a given decomposi-

tion 1 n   . 

The definition of the block numerical range for bounded linear operators (see [4], 

Definition 1.11.12), generalizes as follows to unbounded block operator matrices  of the 

form eq. (1) with dense domain ( ) . 

Definition 1 [7] Let 1 1 1{( , , ) : 1}.n t
n n nx x x x        For 

1( , , ) ,t n
nx x x   define the n n  matrix x : 

 

11 1 1 1 1

1 1

( , ) ( , )

:

( , ) ( , )

n n

x

n n nn n n

A x x A x x

A x x A x x

 
 

  
 
 

   (2) 

Let ( ) : { : ( ), }n n
xW x      be block numerical range of the unbound-

ed block operator matrix , which is defined by (1).  

Remark 2 For 1n  , the block numerical range is just the usual numerical range, for 
2n  , it is the quadratic numerical range, as the bounded case. 

Definition 2 The block operator matrix  in (1) is called 

– diagonally dominant if ijA  is jjA -bounded (see [4], Definition 2.1.2), where 

 , 1, ,i j n  ; 

– off-diagonally dominant if ijA  is 
1 ,n j j

A
 

-bounded, where  , 1, ,i j n  ; 

– block dominant if, for each  j , there exists ji  ( 0 ji n  ), such that ijA  is 
, ji j

A -bounded, 

where   1, , 1, 1, , ; 1, , .j ji i i n j n      

Remark 3 In fact, block dominant is the dominance of one element (operator) in eve-

ry column of the block operator matrix , that is, there is an element (operator) in every col-

umn with respect to which the other operators in the column are relatively bounded. Obvious-

ly, the diagonal dominant or off-diagonal dominant are special cases of block dominance 

where ji j or 1ji n j   , respectively. 
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The following result shows some important properties of the block numerical range 

of unbounded block operator matrix [7]. 

Proposition 1 For an unbounded block operator matrix , we have: 

– ( ) ( ),n
p W   where ( )p  is the point spectrum of . 

– ( ) ( ).nW W  

– ˆ
( ) ( ),n nW W  where ˆ1 n   is a refinement (see [4], Definition 1.11.12) of 

1 n  .  

Definition 3 [9] The block operator matrix: 

*

A B
H

C A

 
    

: ( )H     

is called Hamiltonian operator matrix, if the closed densely defined operators , ,A B C  satisfy 

B, C are self-adjoint and H is densely defined. 

Convergence theorem for unbounded operator matrix  

In order to study the Hamiltonian operator matrix more effectively, we will first fo-

cus on a broader class of unbounded operators. The following lemmas were introduced by Yu 

et al. [7]. 

Lemma 1 [7] Let: 

 

11 1

1

:

n

n nn

A A

A A

 
 

  
 
 

 

be an unbounded operator in 1 n   . Let 1( ) , ( 1, , )
i i

i
k kU i n

   be nested families 

of space in i ,where
i1 =1: span( , , ),( )

i

i i i
k i

i
k k kU       is orthonormal. Let {1,2,3, }  , 

and multi-index 1: ( , , ) .n
nk k k     Consider: 

 

1 1 1

1

:

n

n n n

k k k k

k

k k k k

A A

A A

 

 

 
 

  
 
 

 (3) 

where ( ) ( , ), 1, , ; 1, , ; , 1, , .
p q

q p
k k st pq t s p qA A s k t k p q n          Then ( ) ( ).n n

kW W  

Lemma 2 [7] Let 1( )
i i

i
k kU 

  and k  be as in Lemma 1. Suppose that ˆ, ,nk k  and 

k̂ k , in the sense that, ˆ , 1, ,i ik k i n   . Then ˆ( ) ( ).n n
k k

WW   

In the following result, we obtain the approximations of the block numerical range 

of unbounded block operator matrices which is block dominant. 

Theorem 1 Let , k and 1( )
i i

i
k kU 

 be as in Lemma 1. Suppose that  is block 

dominant and 1( )
i i

i
k kU 

  is a core (see [14], Section III.3) of ,( 1, , ;1 )
ij i iA i n j n    , where

ij iA  is the dominant element in the ith column of . Then: 

( ) ( ) ( ),n

n n n

n n n
k m

k m

W W W

  

   

where : ( , , ) .n nm m m     

Proof. By Lemma 2, it is immediate that: 
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( ) ( )n

n n n

n n
k m

k m

W W

  



 

if we take  1: max , , nm k k   and  1: min , , nm k k  , respectively. By Lemma 1, it there-

fore now remains to prove that: 

( ) ( )
n

n n
k

k

W W





 

Let ( )nW . There then exists ,nx such that   is an eigenvalue of x  as 

defined in eq. (2). Since 1( )
i i

i
k kU 

  is a core of ,( 1, , )
ij iA i n  , there exists a sequence 

=1( )i
k kx  , with each 

i1span( , , )k
i i

k
ix    for some 0ik  , such that 0|| ||k

iix x  and 
0|| ||

i i

i
j i j

i
i kA x A x   as k  , where 

ix  denotes the ith component of x and 1, ,j n  . Be-

cause jiA  is 
ij iA -bounded for 1, ,j n  , we have that 0|| ||i

ji
i

ji kA x A x  as k  . Let 
1( , , )n t

k k kx x x , by a simple calculation, we then obtain that:  

0, as
kx x k     

 Fix kx  as previously. Define isometries:  

 : i

i i

i i
k k

k
U    

by  

 1 1 1( ) : ( , , )
i i i i

i i i i i i i t
k k k k           

for i = 1, …, n.  
Take , 1, ,ik

i i n   , by:  

 
( )

( )

i

i

i i
k k

i i
k k

i

x

x





   

Consider the matrix: 
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1
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, ) , )
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( (

:

( ) ,(

n

n n n
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k k

n

n k nk n
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   

 

 

 
 

  
 
 

 

A simple calculation yields that .
kk xM   Since || || 0

kx x   as k  , this 

entails that || || 0k xM   as k  . Obviously, the eigenvalues of kM  are elements of 
( )n

kW , where 1: ( , , ) .n
nk k k     There hence exists ( )n

k kW   such that k  , 

as k  . It then follows from Lemma 2 that:  

( )
n

n
k

k

W





 

Remark 4 Note that, the result of Theorem 4.6 from [7], is the special case of Theo-

rem 1. 
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Block numerical range of Hamiltonian operator matrix  

Example 1. Consider the rectangular thin plate bending problem with two opposite 

edges simply supported in region  ( , ) : 0 1, 0 1x y x y    . The governing equation in 

terms of displacement is: 

 

2
2 2

2 2
0D

y
w

x

  
     

 (4) 

where 0D  is a constant, the boundary conditions for simply supported edges are: 

 
2

2
( ,0) ( ,1) 0, 0, 0,1w x w x y

w

y


   


 (5) 

We introduce the rotation, θ, the Lagrange parametric function, q, and the moment, m: 

 
2

3 3 2 2

3 2 2
, ,

w w w
q D m D

x x x y x y


       
                   

 

Then eqs. (4) and (5) become [15-17]: 

 

2

2

2

2

0 1 0 0

1
0 0

0 0 0

0 0 1 0

w w

Dy

q qx

m my

 

 
 

              
     
    

    
  

 (6) 

The corresponding 4 4  Hamiltonian operator matrix is given by: 

 

2

2

2

2

*

0 1 0 0

d 1
0 0

d

d
:

0 0 0
d

0 0 1

0

0

A B
H

D

A

y

y

 
    

 
 


 

 
 
 


 
 
 

 

 

 

the domain is ( ) ( ) ,A A   where 2 2(0,1) (0,1),   and: 

 2

2

0 1 0 0

,d 1
0 0

d

A B

Dy

   
             

 

 2( ) : : (0) (1) 0, [0,1], (0,1)A w w w AC w
w



   
        

   
 

After calculation, we obtain the characteristic equation [16]: 
2sin 0.  Therefore, 

the eigenvalues of Hamiltonian operator matrix H  are ,j j  where 1, 2, .j     

Consider 4 4  Hamiltonian operator matrix: 
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2

2

2

2

1

1

0 1 0 0

1

0 1 0 0

d 1
0 0

d
:

d
0 0 0

d

0 0
0

0

1 0

0 0

0 0

0 1 0

Dy
H

A
D

A
y

 
 
 
 
 
 
 

 
 
  
 
  


 

 


 
  

 

1 1( ) ( ) ( )H A A         where 2(0,1),  

  1 2( ) : : (0) (1) 0, [0,1], (0,1)A w w w w AC w        

By Theorem 1, the quadratic and quartic numerical ranges of Hamiltonian operator 

matrix H  can be approximated using the projection method. Since ( ) ( )pH H  [18] and 
4 2( ) ( ) ( ),p H W H W H    we can roughly estimate the spectrum of Hamiltonian operator 

matrix H  using its quartic numerical range. 

Next, we will utilize the projection method to compute:  

4

4 4

4  ( )
m

m

W



 

of Hamiltonian operator matrix H  and subsequently estimate the spectrum. As is well 

known, the eigenvalues and normalized eigenvectors of the operator 1A  are given by: 

 
2( π) , ( ) 2 sin( π ), 1,2, .j jj w y j y j     

Since the operator 1A  is self-adjoint, these eigenvectors can be used as a basis for 

2(0,1) . Define 1( )m mU 
  is nested families of space in 2(0,1) as in Theorem 1, where:  

 1 2 m: span{ , , , }mU w w w  

Therefore, the matrix 4 
m

 is: 

 4

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

0 0 0

1
0 0

:

0 0 0

0 0 0

m m m m

m m m m

m

m m m m

m m m m

I
H H H H

H H H H T I
D

H H H H
T

H H H H
I

 
   
       
      

    

 

where   ,( , 1, ,4)ijH i j  is m m matrix; mI and 0m  denote the m m  identity and zero ma-

trix, respectively: 

 2 2 2 2
24 21 34

1
, diag{π ,4π , , π }:m mH I H H m T

D
        

It is easy to see that: 

  4

4 2 0
( )

0

m m

m
m m

W
I

W
T

  
   

  
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Let : { , 1},m mx x   then we have: 

 4

4 2( ) { : ( , )( , ), , }m
mm

x y xW T y x y       

Furthermore, since 4( ) { π, 2π, , π}.
m

m       Specifically, in the previous equa-

tion, when ,x y then we obtain that: 

 2{ : ( , )( , ), }: co{ π, 2π, , mπ} co{π,2π, ,mπ}m
mx x T x x x          

Hence, 4( ) ( )pm
H  as ,m  i. e.,  

4

4 4

4( ) ( )p m
m

WH



  

On the other hand, eqs. (4) and (5) can become [19]: 

 

2

2

2

2

10

0 0 0 1

0

0

0

0

0

0 0

1

w w

m m

q qyx

Dy

 

 
 

    
          
     
    

    
  

 (7) 

The corresponding 4 4  Hamiltonian operator matrix H  is given by: 

 

2

2

2

2

0 0 0 1

0 0 1 0

d
0 0 0

d

d 1

0
:

0 0
d

0

B
H

Cy

Dy

 
 
 
 
 





 
 
 


 
  






 

Notice that the Hamiltonian operator matrix derived from eq. (7) is off-diagonally 

dominant, while the case from eq. (6) is block dominant. Similarly, we can obtain the follow-

ing related conclusions: 

 ( ) ( ) ( ) ( )p pH H H H       

 4

0 0 0

0 0 0

0 0 0

1
0 0

m m m m

m m m m

m m m m m

m m m

I

I

T

T
D

 
 
 

  
 
 
 
 

 

 4

4 2( ) { : ( , )( , ), , }m
mm

x y T y xW x y       
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The next step is to provide the figure at 2,4,6,8m  using the random vector method 

to approximate the quartic numerical range of the matrix 4m
. The red dots represent the 

point spectra, and the blue plots represent the quartic numerical range of the corresponding 

matrix 4m
. 

Figure 1 shows the quartic numerical range of the matrix 4m
. From figs. 1(a) and 

1(b), it can be seen that when 2,4m  , the point spectra of the corresponding matrix almost 

falls within its quartic numerical range. However, from figs. 1(c) and 1(d), it can be observed 

that when 6,8m  , some point spectra of the matrix falls outside its quartic numerical range. 

Since we used 
55 10  random vectors to generate figs. 1(a)-1(d), the lack of coverage of the 

point spectra by the quartic numerical range in figs. 1(c) and 1(d) may be due to the smaller 

number of random vectors used. Therefore, we used 
65 10  random vectors to obtain fig. 

1(e). Although it did not achieve the expected effect, the quartic numerical range has slightly 

increased. As we see, the random vector method is very slow in filling the quartic numerical 

range of matrices with larger dimensions. 

 

Figure 1. Approximate the quartic numerical range of the matrix 4m
; (a) m = 2, (b) m = 4, (c) m = 6, 

(d) m = 8, and (e) m = 8 

Conclusions 

In this paper, we approximate the block numerical range of unbounded block opera-

tor matrices that are block dominant. As a preliminary illustration, we compute the quartic 

numerical range of a concrete Hamiltonian operator matrix. An understanding of the block 

numerical range of the Hamiltonian operator matrix can facilitate the estimation of its spec-

trum location.  

From the perspective of numerical approximation, we will investigate the drawing 

algorithm of the block numerical range of Hamiltonian operator matrices. This algorithm can 

efficiently represent the image of its block numerical range. 
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