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If the random variable changes with time, we can consider it a stochastic pro-
cess. The stochastic claims process is particularly important in insurance, where 
the frequency of claims is a random variable. Classical risk models typically as-
sume that the number of claims by insurance companies follows an (a, b, 0) type 
distribution. In practice, however, the number of claims is often an over-dis-
persed or heavy-tailed phenomenon. To compensate for this deficiency, mixed 
distributions have been proposed. This article discusses the lapse probability of a 
general compound mixed negative binomial small claims process risk model 
based on a negative binomial mixture distribution. 
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Introduction 

Random process theory, as an important tool for studying random phenomena, is 

used in many fields. For example, He and Qian [1] proposed a fractal approach to a stochastic 

diffusion process with great success. This paper mainly considers the problem of bankruptcy 

probability in the stochastic claim process risk model with small claims.  

The calculation of bankrupt probability is a crucial issue in actuarial science, the ca-

nonical risk model [2] is a classical model of non-life insurance theory. Here, the ruin prob-

lem refers to a state in which the surplus process falls below the level of 0 at a certain time. 

When the random variable of claim amount follows a light-tailed (small claims) and heavy-

tailed (extremely large claims) distribution in the homogeneous Poisson claim process, the 

discussion of ruin probability is carried out. At present, relevant theories can be found in the 

literature [2, 3], etc. The asymptotic ruin probability can be discussed. For example, Hipp [4] 

obtained the bankruptcy probability according to the controlled risk model with small claims. 

Grigori [5] obtained an approximate expression for the bankruptcy probability of the discrete 

Brownian risk model. Albrecher [6] considered the bankruptcy probability of classical risk 

model with claim sizes that are mixtures of phase-type and sub-exponential variables, and so 

on. But the claim numbers of these risk models are based on Poisson distribution, negative bi-

nomial distribution or geometric distribution, the over-dispersion of claim numbers is not con-

sidered. 

–––––––––––––– 
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In practice, the variance in the claims counting process is often greater than the 

mean, which usually shows the characteristics of over-dispersion and even heavy tails. Tradi-

tional distributions in the (a, b, 0) model cannot fit claims well. To compensate for this defi-

ciency, mixed distributions have been successively proposed, see [7-11]. Since the variance of 

mixed negative binomial processes is larger than the mean, and the heavy tail index tends to 

1, the risk model with mixed negative binomial counting process studied in this paper has a 

practical application background. 

Compound mixed negative binomial process risk model  

Mixed negative binomial (MNB) distribution is the combination of negative binomi-

al distribution and other distributions. It has the characteristics of over-dispersion and heavy 

tail. This part mainly introduces the definitions of MNB distribution and compound MNB 

process risk model. 

The pmf of classical negative binomial distribution can be expressed: 
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where parameters 0, 0 1.q    It can be noted that T follows a negative binomial distribu-

tion, that is, ~ ( , )T NB q . The first moment, variance, moment generating function (mgf) 

and generating function (gf) are, respectively: 
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 If the pdf of the non-negative random variable is assumed to be ( ),f   mgf is 
( ),M   where  is a parameter vector and each element is greater than 0 , then the MNB dis-

tribution can be defined directly. 

Definition 1 A random variable T is said to have a MNB distribution with the non- 

-negative parameters ( , )   if its pmf is provided by: 
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where .| )~ , (T NB e    We denote the MNB distribution by ~ ( ,  ).T MNB    According to 

the formula of conditional expectation, the expectation, variance, mgf and gf can be obtained: 
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where ( )E  is the expectation of  . 

Over-dispersion is an important feature of the number of insured losses. This paper 

discusses the over-dispersion and heavy tail of MNB distribution through the following theo-

rem.  

Theorem 1 Let ~ , )T MNB(δ Θ  and assume ( , )   is a non-negative parameter 

vector, then: 
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– Over-dispersion coefficient  
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The expectation and variance of T  are: 
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So the MNB distribution has both heavy tail and over-dispersion characteristics. 

According to the definition of the MNB distribution, the MNB random sequence, the 

MNB processes, compound MNB processes and MNB process risk model can be defined.  

Definition 2 The non-negative integer valued random variables sequence

}( ),{   0M    is MNB random sequence, if 2 1 2 1 ][ ( ~ [ ( , ( ) )] )M M MNB        for all 2 1  , 

that is: 
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Theorem 2 The MNB random sequence has stationary independent increments.  

Proof For:  
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It is easy to know that 1 0 2 1 1( ( ,  )) ) ) )( ( ,  ),  ( (M M M M M M           are inde-

pendent, then the MNB random sequence has the independent increments. There have the 

same distribution for any 0, ( ) ( ),M M       then ( ),   0}{M    has stationary increments. 

Therefore, the MNB random sequence ( ),   0}{M    has a stationary independent increment.  

Definition 3 ( ), 0}{ M ι  ι is called the MNB process with parameters ( ,  ),   if: 

(1) M(0) = 0 

(2)  ( ), 0}{ M ι  ι has a stationary independent increment 

(3)  ( ) ~ ( ,   )M MNB    for 0   and  
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where  0 0 x Π represents initial capital, 0c  is premium in unit time. The 
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( ) ( )x P S     is the ruin probability when the initial capital is x. 
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is called safety coefficient. When 0  , bankruptcy inevitably occurs, that is, ( ) 1.u  . 

Where 1u is the expectation of claim T. 
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Main results  
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( )

( )
M

iiS t T  is compound MNB process, per claim Ti ≥ 0. The expec-

tation, variance and mgf are, respectively, given by 2
1 1( ),  ( ),E T D Var T    and 

( ,( )) T
TM E e   then: 

– Claim process ( ),  0}{S    has the stationary independent increment. 

– The expectation, variance and mgf of ( )S   are as shown. 

2 2
1 1 1[ ( )] [ ( )], [ ( )] [ ( )] [ ( )]E S E M Var S D E M Var M        

( ) )
1 )1 ( )

(
(

S

T

e
M E

e M




 






 

   
   

     

 

Proof (1) Let 1 20 ,    then
 

 

1
1 1

.( ) ( )
M

ii M
S S T




  
 


  

    From the independ-

ent of 1{ :}i iT     

 

 

 

 2 3

1 21 1

, ,
   

 
M ι M ι

i i

i M ι i M ι

T T  

are Mutually independent. So { ( ),   0}S    has the independent increment. And: 

  

 

 

     1
1 11 1 1

1[ | ,   ( ]( ) )
 

     





          
  


M ι M ιm m M ι M ιω ω

i ii M ι i M ι im m i
T T T

ω ω

l n

E e E e M ι l M ι κ E e  

Then:  

 

     1

1 11

and

M M M

i

M i

i

i

T T
  



  









 

   

have the same characteristic function. So 1)( ()S S     and 1( )S      have the equal dis-

tribution. Then { ( ),  0}S     has the stationary increment and the result (1) is obtained. 

 (2) The expectation and variance of S(ι) can be easily calculated by the conditional 

expectation formula. The mgf of S(ι) is: 
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where ( )SM  is the mgf of S and ( )E  is the expectation of  . 

 Lemma 2 For the profit process { ( ),   0},Z     there exists a function ( )( 0)g     
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Proof It is easy to infer from the Lemma 1. 

Lemma 3 There is only one positive number  such that ( ) 0,g    and is referred 

to as the adjustment coefficient. 
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 
1

1
1

TM
e 




 


 



Yuan, H., et al.: The Mixed Negative Binomial Process Risk Model with … 
2046 THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 2041-2049 

The mgf continues monotonically increasing on the interval  10,  with respect to 

 . The uniqueness of the positive solution is proved below. 

Firstly,  
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then the first order derivatives of 1 2,L L with respect to  are following: 
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We can obtain:  
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Theorem 3 Under the assumption of Lemma 3,  is the adjustment coefficient and 

the finite time ruin probability of the general compound MNB process risk model is: 
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If there is 0 ( ), such as 0

0 0( ) ( 1/4),
c

c    , so that:  
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Morever:  
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Then the ruin probability is given by: 
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and the ultimate ruin probability .( ) xx e   

Corollary 1 Under the risk model ( ), 0}{ Π ι  ι with a total claim amount of com-

pound MNB process, the claim amount iT is independent and identically distributed and obeys 

exponential distribution with parameter  . The final ruin probability is: 
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where Λ is a unique positive solution with equation   0g   . 

Proof If bankruptcy occurs at a finite time of S   , denote H  as the surplus be-
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then:  
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where Ε  is a unique positive solution with equation ( ) 0.g   . 
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then accommodation coefficient E is the solution of:  
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then accommodation coefficient E is the solution of: 
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Conclusion 

This paper considers the over-dispersion and heavy tail of the number of claims. 

Under the small claims conditions, the MNB claims process risk model is analyzed with dif-

ferent parameters to obtain the representation of the probability of bankruptcy.  
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