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Semi-continuous data, also known as zero-inflated non-negative continuous data, 
are commonly observed in various fields such as biomedicine, environmental sci-
ence, and ecology. Such data exhibit a combination of zero values and positive 
continuous values that are right-skewed and heteroscedastic. In this study, we 
present a novel approach for analyzing complex semi-continuous data using a 
two-part quantile regression method. In addition, we investigate variable selec-
tion techniques using least absolute shrinkage and selection operator, smoothly 
clipped absolute deviation, and minimax concave penalty methods within the 
framework of two-part quantile regression. Simulation studies are then conduct-
ed to evaluate the effectiveness of the proposed methods. Finally, we apply these 
methods to examine the determinants of health care spending decisions in Ameri-
can households. 
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Introduction 

Semi-continuous data is a typical type of complex data often encountered in biology, 

sociology, and so on. Some examples are alcohol consumption [1] and microbiome data [2]. 

The field of statistical theory on semi-continuous data has undergone many developments in 

the past decade, and there is much literature on statistical methods of semi-continuous data, 

see for example [3-5]. Meanwhile, the statistical analysis and application of semi-continuous 

data is also progressing steadily. For more details, see [6-8]. For the analysis of semi-

continuous data, the two-part model plays an important role and can be extended to regression 

models by adding predictive factors to each component of the model [4], for example, the 

Bernoulli-lognormal two-part (mean) regression model. The typical framework of these mod-

els assumes that the covariates affect the mean of the conditional response variable distribu-

tion. It is well known that parameter estimation in regression analysis is affected by outliers 

and may be unreliable if the data distribution deviates from normality [9]. In addition, for the 

two-part model of semi-continuous data, it usually with a lot of predictive factors (explanato-

ry variables), but most of the predictive factors are unrelated variables. In this case, it is nec-

essary to select a subset of predictive factors and estimate them to obtain a simplified model. 

–––––––––––––– 
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As we all know, the quantile regression model [10] is not limited by data error dis-

tribution, which can capture the heterogeneity of the influence of regression coefficients on 

different parts of the distribution and is robust to outliers. In terms of application, the quan-

tile regression model has been applied in many different fields, both in frequency theory 

paradigms and in Bayesian theory paradigms, such as medicine [11], financial and econom-

ic studies [12, 13], and environmental modeling [14]. In addition, numerous variable selec-

tion techniques have been proposed, such as least absolute shrinkage and selection operator 

(LASSO), [15], smoothly clipped absolute deviation (SCAD) [16], and minimax concave 

penalty (MCP) [17].  

This paper proposes a two-part quantile analysis method using quantile regression 

and variable selection methods to investigate the heterogeneity and model simplification chal-

lenges in two-part regression models for semi-continuous data. The method allows for both 

the heterogeneity and right skewness of the data and the complexity of the two-part model. 

Specifically, a mixed-effects logistic quantile regression model is proposed that includes: a 

logistic regression model with a non-zero outcome probability and a quantile regression mod-

el with a continuous positive outcome. In addition, variable selection based on LASSO, 

SCAD, and MCP penalty methods for the proposed model is further investigated.  

Two-part quantile regression model  

and variable selection 

For the semi-continuous data {𝑌1,⋯ , 𝑌𝑛}, let 𝑌𝑖
+ = {𝑌𝑖 ∣ 𝑌𝑖 > 0} denote the positive 

part of {𝑌1,⋯ , 𝑌𝑛} and the probability of 𝑌𝑖 , 𝑖 = 1,… , 𝑛 being non-zero is 𝜋𝑖, that is 𝑃(𝑌𝑖
+) =

𝜋𝑖 and 1 − 𝜋𝑖 = Pr(𝑌𝑖 = 0). Then, the quantile regression model for semi-continuous data in 

two-parts is expressed in the following manner. 
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where g(πi) = ln [ln(πi)/(1 – πi)], X1i = {X1i0, X1i1, X1i2,…, X1ip}
T is p+1-D explanatory variable 

and β1 = {β1,0, β1,1,…, β1,p}
T is the corresponding p+1-D parameter. The X2i = {X2i0, X2i1, 

X2i2,…, X2iq}
T is q+1-D explanatory variable and βτ = {βτ,0, β τ,1,…, β τ,q}

T is the correspond-

ing q+1-D parameter under a given quantile 𝜏 ∈ (0,1), 𝜀𝜏 is a random error. Note that loga-

rithmic transformation is performed on the response variables to maintain the linearity of the 

regression model coefficients. 

Next, the variable selection method of two-quantile regression models under LAS-

SO, SCAD and MCP penalties will be studied. For the first part (binary part) of the model (1), 

each Yi, i = 1,…, n of semi-continuous data  {𝑌1,⋯ , 𝑌𝑛} is 0 or 1 , and 𝜋𝑖 = 𝑃(𝑌𝑖 = 1 ∣ 𝑋1𝑖), 
then 1 − 𝜋𝑖 = 𝑃(𝑌𝑖 = 0 ∣ 𝑋1𝑖). For 𝑛 observation {𝑌1,⋯ , 𝑌𝑛}, the corresponding log likeli-

hood function is: 
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The parameter 𝜷𝟏 will be estimated by LASSO, CAD and MCP method, respective-

ly. First of all, as defined by the LASSO, SCAD and MCP methods, 𝜷1 can be obtained by 

minimizing the following objective function: 
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where Pλ1,L(|β1j|) is the penalty function of LASSO, Pλ1S,M,γ1SS,L(|β1j|) – the penalty function of 

SCAD or MCP method, λ1L, λ1S,M, and γ1S,M  are the hyperparameters for LASSO, CAD and 

MCP methods, respectively. For the solution of (3) and (4), the coordinate descent (CD) [18] 

algorithm to be used to obtain the optimal parameter estimation. 

For the second part (quantile part) of model (1), the second part of the punishment 

parameters estimation rely mainly on { | 0},i i iY Y Y   I = 0, 1,…, n+. According to the quan-

tile loss function, the estimation 𝜷𝜏 in LASSO SCAD and MCP penalty methods, the objec-

tive function can be expressed: 
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Similarly, tuning parameters λτL, λτS,M, and γτS,M in the penalty function control the 

complexity of the model. In addition, for the values of γ1S,M and γτS,M, we refer to  

γ1S,M = γτS,M = 3.7 suggested in [16]. For the solution of the objective function (5) and (6), the 

local linear approximation algorithm (LLA) was used for the parameter estimation [19]. In 

addition, the λ1L, λ1S,M, λτL, and λτS,M are chooed by using the 10-fold cross-validation to select 

variables. 

Simulation 

In the setting of simulation parameters, for the setting of the number of parameters, 

assumption p = q = 17 without losing the general. In addition, five quartiles were selected, 

which are 0.1, 0.3, 0.5, 0.7, and 0.9, respectively. For the real value of 𝜷1 and 𝜷𝜏, randomly 

set it: 

1 (0.2, 0.4, 0.3, 0.4, 0.5, 0.6, 0.8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)   

(0.5, 0.8, 0.7, 0.4, 0.6, 0.5, 0.7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)    

Assume that the covariates X1 = {X11, X12,…, X1n} and X2 = {X21, X22,…, X2m} as the 

first part and second part covariate, respectively. Suppose that X1 comes from the multivariate 

normal distribution Np(0, Σ) and X1 = X2, where the elements of Σ are ρ|i–j|, i, j = 0, …, p,  
ρ = 0, 0.5. The ρ = 0 indicates that covariates are not correlated and ρ = 0.5 indicates that co-

variates are correlated to a certain extent. 

The generation of response variables should be divided into two steps, the first step is to 

generate the mixture of 0 and non-0 data, and the proportion of 0 is: 
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The second step generates non-zero data, assuming Yi | Yi > 0 exp(𝑋2𝑖 
𝑇𝜷𝜏 + 𝜀𝜏). 

Depending on ετ, the corresponding response variables will follow different distributions, in 

this paper, we make 𝜀𝜏 ∼ 𝑁(Φ−1(𝜏 = 0),1) or 𝜀𝜏 ∼ 𝑡(3). Then the final response variable is  

𝑦𝑖 = Binomial(𝜋𝑖) × [exp(𝑋2𝑖 
𝑇𝜷𝜏 + 𝜀𝝉)], 𝑖 = ⋯ , 𝑛. In the simulation analysis, the sample 

size to n = 150 for comparison. All simulations were conducted 500 times, and the displayed 

results are the average of these 500 results. 
In order to evaluate the proposed model in terms of estimation error and model selection 

ability, three measures are given: 

–  Mean absolute Bias: Bias =
1

𝑝+1
∑𝑗=0
𝑝

 |𝛽𝑗 − �̂�𝑗|. 

–  Mean square error: MSE =
1

𝑝+1
∑𝑗=0
𝑝

 (𝛽𝑗 − �̂�𝑗)
2
. 

–  Accuracy: Accuracy (𝜷) =
#{𝑗:𝛽𝑗≠0&�̂�𝑗≠0}+#{𝑗:𝛽𝑗=0&�̂�𝑗=0}

𝑝
 

where 𝛽𝑖 is the true value and �̂�𝑖 is the predicted value of the respons. The Accuracy is de-

fined based on the correct selection of the proportion of non 0 and 0 coefficients in the model:  

#{𝑗 : 𝐴} is the number of 𝑗 satisfying 𝐴 and 𝑝 is the number of parameters. 

Table 1. Results of normal distribution p = q = 17 

n = 150  AC Bias ρ = 0 MSE AC Bias ρ = 0.5 MSE 

Binomial part logit 0.7116 0.1337 0.0518 0.7448 0.1813 0.0911 

Positive part 𝜏:10% 0.6522 0.1379 0.0475 0.6608 0.1620 0.0670 

 𝜏:30% 0.6398 0.113 0.0295 0.6555 0.1348 0.0454 

LASSO 𝜏:50% 0.6312 0.1061 0.0305 0.6463 0.1286 0.0415 

 𝜏:70% 0.6476 0.1128 0.0304 0.6400 0.1367 0.0461 

 𝜏:90% 0.6551 0.1378 0.052 0.6545 0.1677 0.0732 

Binomial part logit 0.7998 0.1371 0.0512 0.796 0.1751 0.0874 

Positive part 𝜏:10% 0.7073 0.1347 0.0462 0.6792 0.1632 0.0659 

 𝜏:30% 0.7194 0.1096 0.0300 0.7147 0.1342 0.0455 

SCAD 𝜏:50% 0.7075 0.1019 0.0277 0.7043 0.1295 0.042 

 𝜏:70% 0.7363 0.1110 0.0288 0.6947 0.1365 0.0459 

 𝜏:90% 0.7004 0.1404 0.0506 0.6872 0.1677 0.0726 

Binomial part logit 0.8404 0.1277 0.0372 0.7828 0.1432 0.0506 

Positive part 𝜏:10% 0.7014 0.1336 0.0451 0.6888 0.1537 0.0573 

 𝜏:30% 0.7259 0.1092 0.0272 0.7152 0.1304 0.0394 

MCP 𝜏:50% 0.7195 0.1017 0.0292 0.7122 0.1271 0.0367 

 𝜏:70% 0.7335 0.1092 0.0272 0.7011 0.1346 0.0408 

 𝜏:90% 0.7046 0.1385 0.0461 0.6884 0.1595 0.0636 

 



Chen, T., et al.: Two-Part Quantile Regression Analysis with Variable … 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 3A, pp. 2023-2030 2027 

Under the previous data parameter setting, the results of normal distributions are 

shown in tab. 1, the results of the t-distribution t(3) are shown in tab. 2, respectively. As can 

be seen from tabs. 1 and 2 that LASSO, SCAD, and MCP penalty methods performed compa-

rably in term of three criterions for different quartiles. Comparatively, the MCP penalty meth-

od had the least bias, the highest degree of accuracy and the smallest mean square error. The 

SCAD method performed between the LASSO and MCP penalty methods. Overall, all three 

methods are better and in practical applications, these three methods can be used selectively. 

Table 2. Results of t (3) p = q = 17 

n = 150  AC ρ = 0 Bias MSE AC ρ = 0.5 Bias MSE 

Binomial part logit 0.7032 0.1327 0.0512 0.7407 0.1828 0.0930 

Positive part 𝜏:10% 0.6260 0.1939 0.0939 0.6365 0.2098 0.1128 

 𝜏:30% 0.6300 0.246 0.0461 0.6366 0.1636 0.0657 

LASSO 𝜏:50% 0.6225 0.1253 0.0386 0.6565 0.1480 0.0549 

 𝜏:70% 0.638 0.1358 0.0464 0.6475 0.1704 0.0721 

 𝜏:90% 0.6180 0.2133 0.1206 0.6300 0.2285 0.1385 

Binomial part logit 0.7895 0.093 0.0514 0.7836 0.1761 0.0856 

Positive part 𝜏:10% 0.6387 0.1905 0.0921 0.6322 0.2117 0.1146 

 𝜏:30% 0.6956 0.2137 0.0467 0.6889 0.1641 0.0664 

SCAD 𝜏:50% 0.6898 0.1249 0.0382 0.7104 0.1448 0.0535 

 𝜏:70% 0.7098 0.1351 0.0467 0.6726 0.1715 0.0728 

 𝜏:90% 0.6253 0.2135 0.1201 0.6333 0.2298 0.1385 

Binomial part logit 0.8273 0.1191 0.0385 0.7852 0.1441 0.0512 

Positive part 𝜏:10% 0.6499 0.1798 0.0778 0.6402 0.1926 0.0923 

 𝜏:30% 0.6951 0.1568 0.0400 0.6871 0.1530 0.0537 

MCP 𝜏:50% 0.6969 0.1247 0.0333 0.7049 0.1387 0.0441 

 𝜏:70% 0.7047 0.1322 0.0393 0.6806 0.1573 0.0586 

 𝜏:90% 0.6345 0.1997 0.1030 0.6393 0.2098 0.1176 

Application 

The RNHIE datasets in the RAND health insurance experiment are typical illustra-

tions of semi-continuous data, as they contain a large proportion of zeros, with the non-

negative portion having a pronounced right skew and heavy tail, and often exhibit a combina-

tion of different distribution shapes. Maruotti et al. [20] and other researchers have also exam-

ined the RAND health insurance experiment (RHIE) dataset to evaluate the impact of 

healthcare spending on patient utilization and quality of care. The information examined in 

this study represents the annual average for each person's insurance coverage. In addition, to-

tal medical expenditures (MED) include expenditures for outpatient visits, hospitalizations, 

prescription drugs, medical supplies, and mental health counseling [20]. Meanwhile, the pre-

dictor variables considered are consistent with those in the research [20]. 
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Using the two-part quantile regression model with the MCP penalty method, the ef-

fects of covariates in the RHIE on whether U.S. households spend on health care and how co-

variates affect U.S. households health care spending at different quantile levels are examined. 

Table 3 reports the estimates of the bivariate partial coefficients, the estimates of the positive 

partial coefficients, and the absolute mean deviation of the penalty estimates at different quan-

tile levels. 

It can be seen from tab. 3 that the binary part of a two-part quantile regression model 

distinguishes two groups of individuals who are infrequent and frequent users of medical ser-

vices. In addition, the influence of some covariate factors on each quantile is not consistent, 

and the sign and amplitude change with the change of quantile level. Considering the quantile 

aspect of a two-part model for quantiles, it is evident that not all factors affect medical utiliza-

tion in a uniform manner. Variability exists in both direction and magnitude, with certain fac-

tors having no discernible effect at different quantile levels. This underscores the importance 

of using quantile techniques. In addition, the MCP penalty method effectively identifies cru-

cial variables and reduce the complexity of the model. 

Table 3. Parameter estimation (MCP) 

Covariate 𝜏th quantile  

 Binary 10 25 50 75 90 

(Intercept) 2.347 1.274 2.389 3.408 4.222 5.443 

LOGC 0.230 –0.144 –0.118 –0.107 –0.073 –0.036 

LFAM  –0.083 –0.099 –0.132 –0.103  

LINC  0.084 0.111 0.102 0.093 0.067 

XAGE  0.009 0.007   0.010 

FEMALE 0.792 0.691 0.497 0.612 0.726 0.437 

CHILD   –0.109 –0.332 –0.406 –0.293 

FEMCHILD –0.781 –0.742 –0.631 –0.739 –0.870 –0.563 

BLACK –1.668 –0.633 –0.576 –0.587 –0.426 –0.267 

EDUCDEC 0.090 0.034 0.026   –0.031 

PHYSLM 0.323 0.488 0.438 0.514 0.499 0.625 

DISEA 0.005 0.032 0.022 0.021 0.017 0.004 

HLTHG  –0.071  0.108 0.159 0.244 

HLTHF  0.211 0.419 0.440 0.298 0.484 

HLTHP 2.453 0.458 0.784 0.809 0.883 0.900 

MHI  –0.004 –0.005 –0.002 –0.003 –0.003 

PBISA 0.078 1.804 1.190 1.056 1.202 1.808 

Conclusion 

In this paper, we studied the complex semi-continuous data characterized by numer-

ous zero values and right-skewed non-negative components. A two-part quantile regression 
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model was constructed to analyze the semi-continuous data. Meanwhile, LASSO, SCAD, and 

MCP penalty methods were introduced for variable selection in the two-part quantile regres-

sion model. Then, simulations were conducted to compare three penalty methods, and it was 

found that the MCP penalty method performed better than the LASSO and SCAD penalty 

methods. Finally, the applicability of the two-part quantile regression with variable selection 

method for semi-continuous data proposed in this paper was also verified by analyzing the 

RHIE sample. 
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