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Following the emergence of the knowledge-based economy, the digital economy, 
and the intelligent economy, smart cities are poised to represent the next phase in 
urban development. These cities aim not only to leverage both physical and digital 
infrastructures for urban advancement but also to harness intellectual and social 
capital as essential elements of urbanization. Smart cities are recognized as pivotal 
catalysts for transforming various sectors by integrating multiple municipal sys-
tems such as transportation, healthcare, and operational frameworks. The concept 
of a smart society evolves from smart cities, characterized by a digitally intercon-
nected, knowledge-driven community that actively pursues social, environmental, 
and economic sustainability. Recently, deep learning has gained traction due to 
its ability to effectively tackle complex problems across diverse applications using 
both supervised and unsupervised learning methods. This approach relies on ad-
vanced techniques for managing large datasets and multilayer neural networks, 
which often outperform traditional ANN in processing historical data. This paper 
introduces a novel algorithm based on deep learning designed to accurately pre-
dict traffic flow behavior. The algorithm learns from multivariate sequence data 
by analyzing spatio-temporal dependencies and non-linear correlations. Simula-
tion results demonstrate that the proposed method surpasses existing algorithms 
in performance.
Key words: deep learning, neural networks, traffic flow, machine learning

Introduction 

With the rapid expansion of cities driven by urbanization and a growing global popu-
lation, smart city services have become increasingly prevalent [1]. A smart city leverages infor-
mation and communication technologies to collect, process, and unify data from essential urban 
infrastructures, as described in [2]. Among the technological advancements shaping modern 
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urban environments, the IoT stands out for its transformative influence on various aspects of 
everyday life [3]. Beyond improving quality of life, IoT also plays a crucial role in fostering 
economic growth. Consequently, IoT research and solution development receive significant 
support from technology enterprises and academic organizations [4]. By leveraging a network 
of interconnected devices-ranging from sensors and actuators to smart gadgets and home au-
tomation systems-IoT applications facilitate efficient data exchange and processing [5, 6]. The 
implementation of IoT technology is fundamental to the realization of smart city functionalities. 
By leveraging cutting-edge communication advancements, smart cities aim to elevate living 
standards and optimize services for their inhabitants [7, 8]. This vision incorporates a wide 
array of interconnected systems [9], such as intelligent housing, modern infrastructure, ad-
vanced energy grids, eco-friendly solutions, innovative educational platforms, efficient health-
care systems, optimized transportation networks, and dynamic urban housing, fig. 1. Despite 
their potential, these technologies introduce considerable complexities in network operations. 
Each application demands specific performance metrics, including varying needs for band-
width, latency, packet delivery reliability, jitter, and other service quality parameters. These ap-
plications generate varying levels of network traffic and involve numerous connected devices, 
such as actuators and sensors. For example, video surveillance plays a crucial role in identifying 
congested areas and enhancing preparedness for traffic incidents and emergencies [10]. This 
type of application requires stringent network conditions, including substantial bandwidth and 
minimal jitter, to function effectively. Real-time applications, such as online gaming and voice 
calls, depend on seamless interactions and exhibit high sensitivity to latency. The diverse nature 
and rapid expansion of these smart city technologies, each producing distinct traffic patterns, 
present significant challenges for maintaining quality-of-service (QoS). Addressing these com-
plexities demands thorough and strategic solutions.

Figure 1. The typical configuration of a network for a smart city

The internet’s original architecture was not designed to accommodate QoS require-
ments; instead, it prioritized best-effort data delivery. Over time, various approaches have been 
introduced to address QoS challenges, including the development of integrated services, which 
take a distinct approach [9]. Integrated services aim to ensure QoS for individual data flows by 
allocating sufficient network resources along the entire transmission path. This approach re-
quires routers to maintain detailed states for each flow, enabling support for both multicast and 
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unicast applications. However, this design increases the complexity of routers, making them 
more prone to failures. Furthermore, the need to track flow states at every network node limits 
scalability, particularly as the number of flows increases [9, 11, 12]. To overcome these limita-
tions, differentiated services were developed as an alternative. This model simplifies scalability 
issues by grouping traffic into QoS classes rather than managing individual flows. Network 
traffic classification (TC) relies on with IPv4 and IPv6 headers’ differentiated services code-
point (DSCP) field. However, these techniques have seen limited implementation in large-scale 
networks [9, 13].

Traffic categorization is essential for numerous network functions, including moni-
toring, QoS optimization, and security enforcement [14]. It underpins service differentiation 
systems, supporting applications like streaming and Voice over IP (VoIP) [15]. By identifying 
traffic types, resources such as bandwidth and latency are able to be distributed according to 
project-specific demands to maintain the required QoS. Various techniques allow traffic sort-
ing without modifying the TCP/IP header, with port-based classification being a widely used 
method that identifies traffic types based on designated port numbers [16]. However, the rise of 
modern applications employing dynamic ports and tunnelling has rendered this method largely 
ineffective. Alternatively, deep packet inspection (DPI) examines packet content, comparing 
it against predefined signatures to determine traffic types [17]. While DPI can be effective, it 
is resource-intensive, struggles with encrypted traffic, and raises significant privacy concerns 
[18-20]. 

The potential of machine learning (ML) algorithms to deliver high accuracy and effi-
ciency in TC has sparked considerable research interest. In supervised learning, the classifica-
tion process involves several key stages. First, traffic features that represent flow characteris-
tics, such as packet length, are identified and extracted. Next, a ML model is developed based 
on these features. Finally, the classifier is trained to map specific features to their corresponding 
categories. 

Data sources

Table 1 presents an overview of fixed-sensor technologies, based on [16, 21]. In-
ductive loop sensors function by monitoring variations in the magnetic field when conductive 
materials are present. Magnetic sensors detect ferrous metal objects through shifts in Earth’s 
magnetic field. In contrast, video image processors rely on analyzing camera footage to extract 
data on traffic flow.

Table 1. Traffic sensor capabilities [22, 23]

Capital costMultiple detected zoneVehicle classification Sensor technology 

45391Inductive loop

0.5-3Magnetic sensor

45521✓Video image processor

45516✓✓Microwave radar

6.5-8✓✓Laser radar sensor

6.5-8✓✓Active infrared

0.8-1Passive infrared

3.5 - 7 ✓Audio sensor
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Microwave radar technology emits and receives electromagnetic waves to detect ob-
jects. Active infrared sensors utilize reflected infrared light from laser diodes to identify ve-
hicles. In contrast, passive infrared sensors detect energy reflected from either vehicles or the 
surrounding environment. Laser radar sensors project near-infrared beams across traffic lanes 
to monitor vehicle movement. Audio sensors estimate traffic volume or density by processing 
audio signals. Moreover, the widespread adoption of GPS-enabled smartphones and vehicles 
has introduced a new data stream that can complement traditional sensors or even serve as an 
alternative when they are unavailable.

Advancements in estimating traffic flow for advanced traffic management systems 
(ATMS) and intelligent transportation systems (ITS) have been made possible through GPS 
trajectory data. By utilizing mobile crowd-sensing methods, these trajectories can also be col-
lected from 95 smartphones, whether from pedestrians or vehicles [24], providing valuable 
insights into road traffic patterns for both motorists and pedestrians.

In this section, a comparison is made between fixed-location sensors and mobile sen-
sors, based on the criteria listed are:
	– Positives and negatives.
	– Commonly used types of measured data.
	– A list of datasets that are freely accessible.

Information from stationary sensors

Traditional fixed-position sensors are primarily based on presence detection technolo-
gies, which are installed at specific locations, referred to as point p. This set-up guarantees that 
measurements are consistently taken at the exact same spot on the roadway. Depending on the 
type of sensor deployed, it may be capable of monitoring one or more lanes. The data gathered 
from these fixed sensors can be represented as a sequence of structured measurements, labelled 
as mp, recorded at position p while monitoring traffic flow in a specific direction along a road 
segment (such as when using an inductive loop detector):

, ,, 1, 2  3, p p tm m t T= = … (1)
where mp,t is the measurement’s estimate at time t and position p.

The measurements provided by a sensor are contingent upon its functionality. Basic 
sensors may only track traffic volume by counting vehicles, whereas more advanced sensors 
can assess factors such as speed and flow density. The most sophisticated sensors even have the 
ability to classify vehicles, offering a more comprehensive view of traffic dynamics.

Stationary fixed sensors offer a key benefit over mobile sensors in terms of reliability, 
as they continuously capture data from every vehicle that passes. On the other hand, GPS sen-
sors are limited to tracking only one vehicle at a time. This makes fixed sensors more suitable 
for generating aggregate data, like total vehicle counts or traffic density.

Flow estimation accuracy is influenced by the number of mobile sensors present in 
the area. A major drawback of traditional fixed-position sensors is their inability to monitor the 
movement paths of objects in motion. As a result, connecting different road segments becomes 
challenging, and any conclusions drawn must rely on inferred data, such as through spatial 
correlation analysis. Additionally, setting up and maintaining an extensive sensor network can 
be highly costly.

Automated fare collection (AFC) systems, while primarily focused onll management, 
also capture valuable data from fixed points. The data gathered through smart tickets can offer 
significant insights into patterns of urban mobility [25].
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Each transaction is linked to the cardholder’s identification, enabling the system to 
capture both the boarding (entrance) and arrival (exit) locations. As a result, even though data 
is collected at fixed points, it can reveal spatial correlations and provide additional insights. 
Research on smart ticketing card data has been discussed in over ten studies [26-29], but none 
of these used publicly available datasets.

Most datasets are restricted due to legal constraints, with only a few available for 
research use. One frequently utilized dataset in various studies is the Caltrans performance 
measurement system (PeMS) dataset [30-32]. It includes 135 datasets from the california de-
partment of transportation, collected from over 39000 different detectors, such as inductive 
loop sensors, magnetic sensors, and microwave radar sensors, all providing real-time data.

The freeway network in major California urban areas is monitored by these sensors. 
the archived data user service holds more than ten years of historical data, including PeMS 
data, and offers extensive information such as traffic statistics, vehicle classifications, incident 
details, and census traffic counts. This data is collected from Caltrans and a variety of local 
agency systems.

The traffic information service provides vital data for major roads in England [33]. 
Since April 2015, it has offered statistics on average travel times, speeds, and traffic flow every 
15 minutes for the Strategic Road Network, which includes motorways and A roads managed 
by Highways England. These travel time and speed estimates are based on information from 
145 fixed sensors within the system.

Moving sensor data 

Mobile crowd-sensing techniques gather valuable data from devices in motion, such 
as smartphones and GPS-enabled vehicles (e.g., taxis and bicycles), to track the routes of both 
vehicles and pedestrians. A key area of focus for many of these initiatives is monitoring urban 
transit systems, including buses, trams, and subways, as well as mapping road conditions and 
alerting authorities to issues like bumps that require intervention [34].

Additionally, call detail records (CDR), which are collected by network operators 
from mobile devices, provide another rich source of data. Though CDR do not include com-
munication content, they capture essential metadata, such as location information, that helps 
define the transaction. With extensive geographic coverage, large datasets, and accurate loca-
tion tracking, CDR are particularly effective for studying commuter patterns. This data enables 
insights into the movement behaviors of mobile phone users, offering valuable perspectives on 
how residents of smart cities navigate their environments, with implications for both economic 
and political analysis [35]. 

In contrast to fixed-location sensors, these sensors are dynamic, moving with their 
owner. From a technical perspective, GPS sensor data can be interpreted as a series of measure-
ments, with each GPS co-ordinate linked to a precise timestamp:

{ }  1  2  . . .    . . . ,   1 ,  2,  . . .   p p pt t T= → → → → =p (2)
Each data point, denoted as pt, includes latitude, longitude, and a timestamp. This data 

can also be interpreted as a sequence of time-stamped points, each containing a set of latitude 
and longitude co-ordinates. Due to this structure, the data from mobile sensors is often referred 
to as spatio-temporal data, where the temporal aspect corresponds to the timestamp, and the 
spatial aspect refers to the GPS co-ordinates.

Moving sensor data provides a deeper level of insight, allowing us to track the exact 
routes taken by vehicles and pedestrians, recognize various movement patterns, and establish 
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links between different road segments. These sensors, which can move freely throughout the 
area, make it easier to identify the actual paths used by cyclists and pedestrians. Additionally, 
since the sensors are already integrated into vehicles or smartphones, they offer a much lower 
infrastructure cost compared to fixed-location sensors, as the focus is solely on data collection 
and processing, rather than installation or maintenance. This enables monitoring of roadways 
that were previously unobserved by stationary sensors.

Unlike stationary sensors, obtaining aggregated data from moving sensors requires 
several sensors traveling in the same direction. One significant challenge with spatio-temporal 
data is ensuring the completeness of the recorded trajectories. Without contributions from all ve-
hicles or pedestrians in the flow, the data may not accurately reflect the full picture. To achieve 
reliability, a large portion of participants must provide data from their sensors. Additionally, 
GPS data from moving sensors carries inherent uncertainty [36]. Necessitating a map-matching 
process [37] to correct discrepancies between GPS readings and the road network during data 
preprocessing. In 2018, new GPS chips in smartphones [37, 38], provided up to 1 m accuracy 
by combining L5 and L1 signals. However, like fixed sensors, most of the relevant datasets are 
not publicly available.

The traffic classification technique utilising machine learning

The TC with ML follows a structured four-step process, fig. 2, consisting of feature 
selection, data collection, preprocessing, model development, and result analysis with visual-
ization. In the initial stages of data collection and feature choice, samples of traffic flows are 
gathered and organized into a dataset for subsequent analysis. A detailed overview of the collect-
ed dataset is provided in section Results and Discussion. The following step involves preparing 

training and test datasets by eliminating irrele-
vant attributes and personally associating each 
specimen with its respective category. During 
preprocessing, the samples are standardized to 
ensure the features are properly scaled. The TC 
model is built using ML algorithms applied to 
the training dataset. Four commonly used su-
pervised learning methods were compared: 
SVM, RF, KNN, and DT. Once the models are 
trained, they are assessed using the test dataset. 
The performance of each algorithm is evaluated 
using four metrics: accuracy, precision, recall, 
and F1-score. Additionally, k-fold cross-valida-
tion is utilized to provide a more robust evalua-
tion of the classification performance.

Assessment of the traffic classification

This section describes the approach used to evaluate the study. It starts by examining 
the traffic patterns in the dataset. Then, the performance metrics for assessing the model are 
introduced. Finally, the set-up for the experiment for testing the port-based technique and ML 
algorithms is presented.

Dataset

For TC, ML techniques combined with a port-based method were applied to the data-
set provided by Moore and Zuev [39]. This dataset, sourced from a computer lab at Cambridge 

Figure 2. Procedures for constructing and 
assessing recommended ML algorithms
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University, includes diverse smart city traffic data with multiple origins, extensive traffic sam-
pling, and various data types. It was collected over a full-duplex gigabit link, capturing activity 
from approximately 1000 users accessing a single website throughout the day. The dataset 
contains 248 features, including statistics on packet inter-arrival times, flow duration, and TCP 
port numbers, with around 377000 samples from TCP traffic. Table 1 outlines the classes and 
their associated applications. To refine the dataset, we eliminate non-statistical features and ran-
domly sample from each class. The Games class is excluded due to insufficient data, resulting 
in a final set of 11 classes, as detailed in tab. 2.

Table 2. Applications for TC
Application Cataloguing

ftp Bulk
Postgres salnet oracle ingres Database
ssh, klogin, rlogin, telnet Interactive
imap, pop2/3, smtp Mail
X11, dns, ident, ldap, ntp Services
WWW WWW
KaZaA, BitTorrent, GnuTella P2P
Internet worm and virus attacks Attack
Half-life Games
Windows media player, real Multimedia

Results and discussion

The outcomes of assessing both port-based TC and machine learning techniques are 
shown in this section. We evaluate the algorithms’ performance by looking at things like train-
ing and execution times, as well as how class size affects accuracy. We then use the port-based 
categorization method to compare the algorithms’ performance.

The machine learning algorithm evaluation

We implemented and evaluated four ML algorithms: SVM, RF, KNN, and DT, opti-
mizing their model parameters to enhance accuracy. For the SVM application, a linear kernel 
was used. The SVM, a supervised learning method, maps data into a higher-dimensional space 
where support vectors define a hyperplane that best separates the classes and maximizes the 
margin between them [40]. The SVM achieved an impressive average accuracy of 97.14%, 
as shown in fig. 3. outlines the precision, recall, and F1-score for each traffic class with the 
SVM model. The results highlight that the Collaborative and Multimedia classes performed the 
weakest. The Interactive class recorded a precision of 0.85, recall of 0.75, and F1-score of 0.81, 
while the Multimedia class had a precision of 0.63, recall of 0.84, and F1-score of 0.71. These 
outcomes indicate that the smaller sample sizes of these categories, coupled with the variability 
in the data traffic, affected the classification accuracy. 

In the RF approach, decision trees are trained on data streams, with their predictions 
combined to determine the final class. To maximize both accuracy and efficiency, the model 
was configured with 50 trees, using entropy for optimal performance. The RF method achieved 
an outstanding average classification accuracy of 98.08%, fig. 4, showcasing its exception-
al effectiveness. Remarkably, the Interactive and Multimedia categories delivered the highest 
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results. The Interactive category achieved perfect precision (1.00), a recall of 0.92, and an F1-
score of 0.95. For Multimedia, precision was 0.85, recall was 1.00, and the F1-score reached 
0.93. These results underscore how the RF method, leveraging an ensemble of decision trees, 
significantly boosts classification accuracy across diverse categories.

In the k-nearest neighbours (KNN) algorithm, the Manhattan distance metric is used 
to maximize both accuracy and performance. The KNN works by classifying data based on the 
proximity of the k-nearest data points. The final classification is determined through a majority 
vote among these neighbors, with the votes weighted according to their distance. The effec-
tiveness of KNN largely depends on the chosen distance metric and the value of k. As shown 
in fig. 5, the ideal k value is found by evaluating accuracy for k-values ranging from 1-20. The 
results suggest that accuracy decreases as the number of neighbors increases, with the most 
accurate classification achieved when k = 4. The KNN algorithm attained an average accuracy 
of 97.17%, which was marginally lower than the other algorithms, fig. 4. Below, we present the 
precision, recall, and F1-score for each class as evaluated by the KNN method. The DT algo-
rithm constructs a series of nodes and conditions that ultimately lead to leaves, where classifi-
cations are predicted. In our application, we utilize the entropy metric to optimize performance. 
The DT method achieved the highest average accuracy of 99.18% fig. 4, outperforming all 
other classification algorithms tested.

Figure 4 showcases the results of each ML algorithm based on F1-score, precision, 
and recall. The decision tree (DT) algorithm led with the highest F1-score of 99.37%, surpass-
ing KNN at 97.16%, random forest (RF) at 98.41%, and SVM at 98.06%. In terms of accuracy, 
DT also took the top spot with 99.27%, followed by RF at 99.16%, SVM at 98.08%, and KNN 
at 97.17%. Regarding recall, DT maintained its dominance with a score of 99.27%, while RF 
scored 98.91%, SVM recorded 98.09%, and KNN had 96.77%. Overall, the DT algorithm ex-
celled in all performance metrics, outshining the other models in every category.

Conclusions

As interest in smart cities continues to grow, the adoption of innovative solutions aims 
to enhance the comfort, effectiveness, and efficiency of everyday life. These urban environ-
ments, with their array of applications, diverse data streams, and varying QoS demands, present 
significant challenges in traffic management. Efficient TC is vital to address these challenges 
and ensure smooth operation. Traditional methods, such as port-based techniques and DPI, 
struggle with dynamic port numbers and encrypted traffic. In contrast, ML algorithms are adept 
at handling these complexities while supporting QoS control.

Figure 3. Average accuracy of ML algorithms Figure 4. Accuracy based on the number of 
neighbours in the KNN method
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In this research, we evaluated four supervised ML algorithms for TC: SVM, RF, KNN, 
and DT. We also explored the effectiveness of a port-based TC method. The findings reveal that 
incorporating statistical features greatly improves the accuracy of ML models for TC. Of the al-
gorithms tested, the DT achieved the highest accuracy at 99.18%, whereas the KNN performed 
the least, with an average accuracy of 97.16%.

Our analysis also revealed that the port-based classification method, which depends 
on fixed port numbers, is less effective than ML algorithms. In contrast to port-based methods, 
ML models consider a broader range of factors, leading to better classification outcomes. Mov-
ing forward, we plan to incorporate ML-based TC into smart city systems that manage critical 
data and address routing challenges. Future research will also explore other ML techniques, 
such as eXtreme Gradient Boosting (XGBoost), to enhance TC in smart city contexts.
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