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Cloud computing, which offers scalable and flexible resources, faces a key challenge 
in task scheduling, directly impacting system performance and user satisfaction. 
Effective scheduling is crucial for optimizing resource use and reducing makespan. 
The NP-completeness of the task scheduling problem complicates achieving opti-
mal outcomes. Scheduling applications is critical in cloud computing due to the 
need to map future tasks to resources in real time. Many existing methods focus 
on makespan and resource consumption but overlook factors like energy usage 
and migration time, which affect web services. This study proposes a horse herd 
optimization-based multi-objective task scheduling approach (HHO-MOTSA) to 
address these gaps. The HHO-MOTSA aims to minimize makespan, energy usage, 
and cost by modelling the social behaviors of horses, including grazing, hierarchy, 
sociability, and defense mechanisms. A fitness function helps evaluate solutions, 
where a low value indicates minimized energy, makespan, and cost. Performance 
tests using CloudSim show that HHO-MOTSA outperforms other methods in effec-
tive task scheduling. 
Key words: task scheduling, cloud computing, horse herd optimization, 

makespan, energy utilization, fitness function 

Introduction

Cloud computing (CC) is a shared technology delivering on-demand services via the 
network, offering users flexible billing and virtually unlimited resources [1]. Task scheduling 
(TS) involves mapping tasks to available resources in a cloud environment, adhering to us-
ers’ QoS constraints like cost and makespan [2]. Workflow applications, often related to fields 
such as biology and astronomy, have moved to the cloud, where providers use schedulers for 
resource management [3]. Given the diversity of CC users, mapping heterogeneous requests to 
virtual resources is complex [4]. Effective scheduling is crucial to improving cloud functional-
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ity, minimizing wait time, and optimizing task execution [5]. Traditional scheduling methods 
do not directly apply to the distributed nature of CC, necessitating customized algorithms that 
improve performance, optimize resources, and reduce latency [6]. These advances are essential 
for meeting the growing demand for cloud services and improving distributed computing [7]. 
Poor scheduling can degrade QoS, increase energy consumption and makespan, and lead to 
SLA violations [8]. Metaheuristic approaches like PSO, GA, and ACO have been applied to 
TS, but there’s room for improvement in scheduling strategies, as the problem remains NP-
hard [9]. Efficient schedulers must prioritize tasks based on factors like electricity costs and 
make informed VM assignments [10]. This study proposes a HHO-MOTSA for CC, aiming to 
minimize makespan, energy use, and cost. The HHO-MOTSA uses the social behavior of hors-
es and a fitness function (FF) evaluate solutions, with performance analysis conducted using 
CloudSim.

Literature works 

Mokni et al. [11] proposed an algorithm combining sequencing, scheduling, and par-
titioning to optimize user-provider conflicts, using MAS for complexity reduction and fuzzy 
logic for ambiguity. Abualigah and Diabat [12] introduced a hybrid antlion optimizer with dif-
ferential evolution minimize makespan and optimize resources. Kruekaew and Kimpan [13], a 
multiobjective algorithm using ABC and Q-learning improves resource use and VM through-

put. Mohammadzadeh and Masdari [14] de-
veloped a hybrid optimizer combining seagull 
and grasshopper algorithms for TS. Manga-
lampalli et al. [15] applied cat swarm optimi-
zation for task and VM prioritization. Emara 
et al. [16], a modified GA optimizes resource 
management via a matrix structure. Yu et al. 
[17] proposed a bat algorithm to improve load 
balancing. Finally, Malti et al. [18] presented 
a pollination-based TS method using TOPSIS 
and Pareto techniques for solution quality im-
provement. 

The proposed model

This manuscript details the HHO-MOT-
SA approach for multi-objective task sched-
uling in cloud computing, aiming to reduce 
makespan, energy use, and cost. Figure 1 shows 
the HHO-MOTSA algorithm’s workflow.

System model

The cloud provides physical machines 
(PM) through an interface. Task requests are 
managed by the request manager, while the re-
source observer tracks PM memory, CPU, and 
storage. The TS module schedules tasks to mini-
mize the FF by collecting data from both manag-
ers to allocate resources to PM.Figure 1. Workflow of HHO-MOTSA algorithm
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Application model and resource model

A group of independent tasks represented as T = (t1, t2, t3, ..., tm). The arrival time of 
this task is neglected as they arrive dynamically [19]. A collection of parameters ti = ta; ts; td; tf 
represents the task ti given by the user. The task length or size, arrival time, finishing time, and 
deadline of task ti are denoted as ts, ta, td, and tf, correspondingly. Consider ts as the starting time 
of task ti on PM Pk. Likewise, Tr the ready time of PM Pk at the data centre. We let Texe be the 
execution time of task ti on PM Pj because of its heterogeneity with respect to CPU processing 
abilities of PM, then the task size ratio, Ts, to CPU capability of PM, Pc, is Texe:

exe  s

c

T
T

P
= (1)

where tf is the implies the finishing task time ti on PM Pj and it is readily calculated: 
exef sT T T= + (2)

where xij is the task‐to‐PM mapping from the cloud infrastructure. The xij take the value of "1" if 
task ti is allocated to PM Pj, or else "0". Then, the finishing time is used to confirm if the timing 
constraint of the task is met, viz., if the task is completed within the given time:

0; if

1 o  0; if  
f d

ij
f d

t t
x

r t t

>=  ≤
(3)

The Cloud data center (CDC) has a limitless set of PM PM = PM1; PM2;..., PMm, 
which provides the physical infrastructure to create virtualized resources for satisfying the re-
quirements of the user. An active PM set PMa = {PMa

1; PMa
2;..., PMa

m} ⊆ PMi is con sidered as 
PMi = (Bi, Ci, Mi) where Mi shows the memory capacity, which is computed, Bi denoted discrete 
pair of frequency and voltage of PMi, and Ci indicates the CPU ability.

Problem definition 

Consider that there is n number of tasks as Tn = (T1, T2, T3,...,Tn) and m refers to the 
number of PM PM = (PM1, PM2, PM3,..., PMm) in the present cloud infrastructure. A PM con-
sists of memory, CPU, and bandwidth for data transmission. Every task should be executed in 
a separate PM instance. The main purpose is to find the solution that allocates each task to the 
PM so that the energy utilization, ϵ, makespan, χ, and the cost, ζ, of each application F(x) is 
minimalized, and the bandwidth, CPU resource, and memory requirement is met and it is ex-
pressed as follows. In eq. (4), the group of possible solutions is S, x is a solution, the makespan 
function is χ(x), the image of χ in the multiobjective space is F(x), ϵ(x) energy function, ζ(x) cost 
function, the bandwidth use function is gi(x), the memory input is Γ(x, i), x, the input bandwidth 
limit is Υ(x, i), the input CPU consumption is Ψ(x, i), and the CPU usage function is h(x):

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
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

(4)

Design of horse herd optimization algorithm
The HHO is inspired by the behaviour of horses at varying ages, categorizing horse 

activity into hierarchy, grazing, imitation, socializing, roaming, and defensive mechanisms 
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[20]. According to eq. (1), HHO simulates the movement of a horse in all the iterations. The 
Xm

Iter,AGE is the location of mth horse, Iter specifies the existing iteration, and AGE and V
→

m
Iter,AGE 

are the ranges of age and velocity of the present horse. The average lifespan of a horse is 25-30 
years, and they show different behavioral tendencies as they age. The lives of Horse are divided 
into four groups:
	– δ: horses at 0-5 ages,
	– γ: horses at 5-10 ages.
	– β: horses at 10-15 ages, and
	– α: horses ages 15 and older

( )1 ,, , , , , ,Iter AGEIter AGE Iter AGE
m m mX V X AGE α β γ δ−= + =



(5)

The HHO ranks horses by their best replies, selecting the top 10% and dividing the 
rest into 20%, 30%, and 40%. These divisions help compute the velocity vector, with the for-
mula defining this vector for horses of different age groups throughout the cycles:

, , ,

, , , , ,

, , , , , , ,

, , , ,

Iter Iter Iter
m m m

Iter Iter Iter Iter Iter
m m m m m

Iter Iter Iter Iter Iter Iter Iter
m m m m m m m
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= +
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= + + + + +

= + +

 

   

     

  

(6)

Horses, as grazing animals, graze throughout their lives. Each horse grazes within a 
defined area, modeled by the algorithm with a g coefficient, and their grazing behaviors are:

( )¡ ¡ 1, ,  , , ,IterIter AGE
m Iter mG g u l X AGEρ α β γ δ−   = + + =     



(7)

, 1Iter AGE Iter
m m gg g ω−= × (8)

where the parameter G
→

 refers to the motion of ith horse, representing the tendency of ith horse 
to graze. In all the cycles, these components linearly decrease with g. The u and l imply the up 
and low grazing space boundaries correspondingly. The g represents the grazing area, while 
h models hierarchical behavior in horses, where they follow the leader, often the most expe-
rienced. Horses adhere to hierarchical rules particularly during middle age, and this can be 
mathematically expressed:

( ) ( )1 1, ,
* , , ,Iter IterIter AGE Iter AGE

m m mH h X X AGE α β γ− − = − =  



(9)

( )1 ,, Iter AGEIter AGE
m m hh h ω−= × (10)

where H
→

m
Iter,AGE, and X*

(Iter – 1) are the impact of the fittest position of horses on the velocity and 
the optimum place of horses, correspondingly. Herd behavior offers protection from predators, 
enhancing survival and safety. Despite their social nature, horses may occasionally conflict due 
to individual traits. Horses aged 5-15 typically prefer to stay with the herd:

( ) ( )1 1, ,

1

1 , ,Iter IterIter AGE Iter AG
N

E
m m j m

j

S s X X AGE
N

β γ−

=

−
  
  = − =
    
∑



(11)
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( )1 ,, Iter AGEIter AGE
m m ss s ω−= × (12)

Now S
→

m
Iter,AGE and s Iter,AGE are social movement vectors of ith horses and its direction 

the herd at Iter iteration, correspondingly. With the ωs element, the directionwards the herd 
decreases at all the iterations. The N refers to the overall amount of horses in the group. Hors-
es copy each other and choose bad and positive routines and behaviors, like finding the best 
grazing position. Juvenile horses copy others, and these behaviors persist until they mature. 
Likewise, these behaviours are inspired by HHO and represented as i, which is given:

( ) ( )1 1, ,

1

 ˆ1 ,
pN

Iter IterIter AGE Iter AGE
m m j

j

I i X X AGE
pN

γ− −

=

  
  = − =
    

∑


(13)

( )1 ,, Iter AGEIter AGE
m m ii i ω−= × (14)

Let I→m
Iter,AGE be the motion vector of ith horses from the top horse’s direction with X^ 

location. The pN refers to the amount of horses positioned in the optimum location. The p is ten 
percent of the overall amount of horses, and ωi shows the reducing factor for each cycle for jIter. 
In response to danger, horses exhibit a fight-or-flight reaction, primarily opting to run. They 
compete for water and food to avoid risky environments and competition, similar to wolves. 
The defence mechanism of Horse acts from the HHO by running out of people who reveal 
incorrect behaviour and the d factor defines it. These behaviors are represented as a negative 
co-efficient to retain away from incorrect posture:

( )1, ,

1

1 ,  , , 
pN

IterIter AGE Iter AGE
m m

j

D d X X AGE
qN

α β γ−

=

  
  = − − =
    

∑




(15)

( )1 ,, Iter AGEIter AGE
m m dd d ω−= × (16)

where D
→

m
Iter,AGE indicates the ith escape factor of a horse from the average horse with the worst 

location. The qN indicates the overall amount of horses having the worst location. The ωd shows 
the reduction factor for each dIter and q is suggested to be considered twenty percent of the over-
all amount of horses. Figure 2 depicts the flowchart of HHO.

The sixth behavior in HHO is wandering. Horses, especially when young, explore 
new areas out of curiosity, which decreases with age. The r is a random movement:

( )1, , ,  ,IterIter AGE Iter AGE
m mR r pX AGE γ δ−= =


(17)

( )1 ,, Iter AGEIter AGE
m m rr r ω−= × (18)

where R
→

 refers to the random velocity vector of ith horses to local search. The ωd denotes the re-
duction factor of rm

Iter,AGE for each iteration. The velocities of δ, γ, β, and α horses are calculated:
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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m m g m
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−

=

−

−− − − −
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Figure 2. Flowchart of HHO
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Deriving fitness function using  
the HHO-MOTSA technique

Fitness values for each individual are calcu-
lated as per eq. (23), with lower values indicating 
reduced energy consumption, makespan, and cost:

( )1 2 3Fit min γ γ χ γ ζ= × + × + × (23)
where the weightage parameters γ1,γ2, and γ3 pro-
vide weight to various parameters i.e., energy con-
sumption, ϵ, makespan, χ, and cost, ζ. This perfor-
mance with lower fitness values is known as the 
optimum result. Using these functions, other per-
formances can be upgraded to find the optimum 
result. The fitness value evaluates the efficiency 
of possible solutions considering the prey loca-
tion. The objective is to define the optimum task 
allocation the PM, such that the energy, cost, and 
makespan are reduced. Each parameter applied in 
FF is evaluated as: eq. (30) computes the energy 
consumption, ϵ, eq. (31) computes makespan, χ, 
and eq. (34) computes the cost, ζ. Moreover, the 
fitness of each individual solution is defined using:

Energy consumption, ϵ:
 
In CDC, the energy 

expended by various elements is storage systems, 
servers, cooling, equipment electric, and network 
components. The PM is the primary energy con-
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sumer and is largely affected by the CPU, disk storage, and RAM. The energy consumption of 
ith PM, represented as Ei, is classified into 2 parts: static power, Ps, and dynamic power, Pd. The 
amount of dynamic and static powers produces the overall quantity of power usage:

             t s dP P P= + (24)

The Pd aspects of PM are impacted by the frequency of CPU, f di, and the square of sup-
ply voltage, (V ti)2. The αi denotes the relationships between dynamic power and these variables 
are described by proportionality constant. The dynamic power of PM Pd is the product of this 
constant with the CPU frequency f di and (V ti)2 is directly proportional to Pd:

2 3( ) ( )  t d d
d i i i i iP V f fα α= = (25)

where βi is the power ratio for idle PM and fmax and Pmax are the maximal frequency and power 
utilization by host PM, correspondingly. The αi is the proportionality coefficient for host PMi:

( ) max
3

max

1
 

( )
i

i
P

f
β

α
−

= (26)

( ) 3 3
max max1 ( ) ( )       d

d i iP P f fβ= − (27)

( ) max 3
max 3

max

1 *
( )     

( )
it d

i s d i i i
P

P P P P S f
f
β

β
−

= + = + (28)

The parameter S ti is the execution status of PM, at time, t, where the value of binary 
variable 1 if PMi, is currently active or else not. The quantity of energy consumed by PMi from 
the starting time, st, to the finishing time, ft, is estimated:

( ) max 3
max 3

max

1
( ) d       

( )

t

t

f
ir d

T i i i
s

P
E P S f t

f
β

β
 −

= + 
  
∫ (29)

where ET is the energy consumed by a single PM and is defined:

1  m
i TiP== (30)

where the amount of PM is denoted as m and the overall power consumed can be represented as ϵ.
Makespan, χ: Makespan is the time elapsed from the task initiation the task finishing 

and it is mathematically modelled:

1 maxn
i fiTχ == (31)

where the overall amount of tasks is n and the finishing time of ith task is Tfi. 
Cost model, ζ: The CC tasks and resources have varying costs and CPU requirements. 

This study models resource costs by classifying them into memory and CPU to align user bud-
gets with these variations:

cCt v η ρ= × + (32)
where ρ is the cost involved with CPU transmission, Ctc – the CPU cost, v – the base price when 
the PM has been employed by the limited consumption, and η – the duration of the task ti uses 
PM φ:

 MCt v φ ϖ= × + (33)
Likewise, CtM refers to memory cost, the base price for 1 GB of memory can denoted 

as v, and the time task ti implement in PM is ϕ. The cost for the memory communication time is 
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ϖ. The cost function is attained using the equations where CCPU is CPU cost and Cmem is memory 
cost:

CPU 1
m i
i ctC C== (34)

1mem c
m
j

j
tC M== (35)

CPU memC Cζ = + (36)

Experimental validation

This section compares the HHO-MOTSA technique’s scheduling performance with 
various tasks [21]. Table 1 and fig. 3 show that HHO-MOTSA consistently has the lowest 
makespan (MSP) compared to CCS, ICSA, CSRSA, and EERS-CEPO, with MSP increasing 
as task numbers rise. For 100 tasks, HHO-MOTSA achieves 126 ms MSP, while the others 
range from 265-521 ms. For 600 tasks, HHO-MOTSA’s MSP is 1621 ms, compared to 1862-
2605 ms for the other methods. 

Table 1. The MSP analysis of the HHO-MOTSA system  
with recent systems under various tasks

Makespan [ms]

Number of tasks CCS ICSA CSRSA EERS-CEPO HHO-MOTSA

50 250 243 289 237 202

100 467 358 521 265 126

150 746 630 917 460 285

200 970 809 1032 599 355

250 1149 979 1118 800 606

300 1343 1157 1195 978 754

350 1537 1366 1311 1103 959

400 1714 1559 1459 1266 1092

450 1932 1737 1652 1404 1171

500 2141 1940 1768 1544 1377

550 2381 2179 1993 1746 1512

600 2605 2289 2126 1862 1621

Table 2 and fig. 4 show that HHO-MOTSA achieves the lowest response time (RT) 
compared to CSRSA, CCS, and ICSA. The RT values increase with more iterations. 

With 100 iterations, HHO-MOTSA has an RT of 792 ms, while CCS, ICSA, CSRSA, 
and EERS-CEPO have RT of 1663 ms, 1617 ms, 1111 ms, and 960 ms, respectively. With 250 
iterations, HHO-MOTSA’s RT is 519 ms, compared to 852 ms, 831 ms, 794 ms, and 660 ms 
for the other methods. 

Table 3 and fig. 5 show that HHO-MOTSA achieves the lowest execution time (EXT) 
compared to CCS, ICSA, CSRSA, and EERS-CEPO. For 100 tasks, HHO-MOTSA has an EXT 
of 2000 ms, while the others range from 2210-3634 ms. For 600 tasks, HHO-MOTSA’s EXT 
is 5171 ms, compared to 5406-6551 ms for the other methods. The EXT values increase with 
more tasks. 
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Figure 3. The MSP analysis of HHO-MOTSA 
technique under various tasks

Figure 4. The RT analysis of the HHO-MOTSA 
technique under various iterations

Table 2. The RT analysis of the HHO-MOTSA technique  
with recent systems under various iterations

Response time [ms]

Number of iterations CCS ICSA CSRSA EERS-CEPO HHO-MOTSA

25 2513 2570 2126 1876 1456

50 2204 2196 1821 1613 1299

75 1988 2030 1428 1246 1038

100 1663 1617 1111 960 792

125 1394 1333 772 681 536

150 1102 921 782 658 476

175 969 844 762 646 406

200 869 834 763 643 457

225 844 834 778 663 546

250 852 831 794 660 519

Figure 5. The EXT analysis of HHO-MOTSA 
technique under various tasks

Figure 6. The ECON analysis of HHO-MOTSA 
technique under scheduling cycles
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Table 3. The EXT analysis of the HHO-MOTSA technique with recent systems under various tasks

Execution time [ms]

Number of tasks CCS ICSA CSRSA EERS-CEPO HHO-MOTSA

50 2068 1785 2005 1518 1272
100 2634 2381 2807 2210 2000
150 3260 3120 3070 2741 2511
200 3855 3681 3543 3290 3044
250 4278 4309 3872 3635 3340
300 4656 4875 4405 3935 3646
350 4907 4890 4653 4185 3957
400 5280 5109 5017 4418 4175
450 5610 5408 5171 4686 4431
500 5829 5660 5421 4968 4679
550 6130 5972 5626 5125 4810
600 6551 6332 5940 5406 5171

Table 4 and fig. 6 show that HHO-MOTSA has the lowest energy consumption 
(ECON) compared to CCS, ICSA, CSRSA, and EERS-CEPO. With 1 scheduling cycle, 
HHO-MOTSA consumes 1.33 kWh, while the others range from 2.97-3.46 kWh. With eight cy-
cles, HHO-MOTSA’s ECON is 1.93 kWh, compared to 3.63-4.21 kWh for the other methods. 
The ECON values increase with more scheduling cycles. Table 5 and fig. 7 show HHO-MOT-
SA with the lowest average energy consumption (AECON) compared to CCS, ICSA, and 
CSRSA. AECON increases with task count. With 50 tasks, HHO-MOTSA has an AECON of  
0.85 kJ, while CCS, ICSA, CSRSA, and EERS-CEPO have AECON of 2.68 kJ, 2.45 kJ,  
2.46 kJ, and 2.32 kJ, respectively. With 600 tasks, HHO-MOTSA’s AECON is 7.21 kJ, 
compared to 8.52-10.78 kJ for the others. Table 6 and fig. 8 show that HHO-MOTSA has the 
lowest average execution power (AEXP) compared to CCS, ICSA, CSRSA, and EERS-CEPO. 
With 100 tasks, HHO-MOTSA’s AEXP is 1162 W, while the others range from 1434-1741 W. 
With 600 tasks, HHO-MOTSA’s AEXP is 4016 W, compared to 4377-6175 W for the others. 
AEXP increases with task count.

Table 4. The ECON outcome of HHO-MOTSA technique with recent systems under scheduling cycles

Energy consumption [KWh]

Scheduling Cycle CCS ICSA CSRSA EERS-CEPO HHO-MOTSA

1 3.46 3.40 3.15 2.97 1.33
2 3.22 3.20 3.05 2.76 1.07
3 3.73 3.83 3.10 2.91 1.44
4 3.51 3.45 3.39 3.07 1.65
5 3.12 3.11 2.92 2.82 1.42
6 3.80 3.92 3.75 3.60 2.12
7 3.16 3.01 3.06 2.89 1.43
8 4.21 3.84 3.87 3.63 1.93
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Table 5. The AECON analysis of HHO-MOTSA technique with recent systems under various tasks
Average energy consumption [kJ]

Number of tasks CCS ICSA CSRSA EERS-CEPO HHO-MOTSA
50 2.68 2.45 2.46 2.32 0.85
100 3.41 3.18 3.08 2.80 1.46
150 3.84 3.47 3.49 2.95 1.45
200 4.40 4.06 4.01 3.42 2.05
250 5.07 4.83 4.65 4.33 3.11
300 5.74 5.56 5.18 4.91 3.49
350 6.72 6.55 5.90 5.24 3.96
400 7.56 7.16 6.47 5.77 4.43
450 8.40 8.13 7.12 6.69 5.36
500 9.24 9.21 7.55 7.34 5.94
550 9.64 9.54 8.78 7.94 6.66
600 10.78 10.05 9.31 8.52 7.21

Figure 7. The AECON analysis of  
HHO-MOTSA technique under various tasks 

Figure 8. The AEXP analysis of the  
HHO-MOTSA technique under various tasks

Table 6. Analysis of HHO-MOTSA AEXP vs. recent systems across tasks
Average executive power [W]

Number of tasks CCS ICSA CSRSA EERS-CEPO HHO-MOTSA
50 1557 1403 1678 1232 903
100 1712 1603 1741 1434 1162
150 2018 1865 2079 1725 1306
200 2368 2245 2217 2001 1662
250 2676 2755 2568 2398 2031
300 3092 2997 2968 2721 2441
350 3535 3412 3319 3075 2702
400 3919 3840 3656 3353 3020
450 4473 4302 3829 3552 3239
500 5055 4622 4225 3829 3407
550 5638 5113 4424 4118 3708
600 6175 5791 4731 4377 4016
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Thus, the HHO-MOTSA technique can be applied for enhanced scheduling perfor-
mance in the CC environment.

Conclusion

In this manuscript, we focus on the designs and development of HHO-MOTSA in the 
CC platform. The drive of the HHO-MOTSA algorithm is to accomplish multi-objective TS 
in the CC to decrease the makespan, energy utilization, and cost. In addition, the HHO-MOT-
SA technique mainly relies on the social characteristics of horses at distinct ages by the use 
of six significant features. Moreover, the HHO-MOTSA technique designs an FF to estimate 
every individual, and a low fitness value represents that the minimization of energy utilization, 
makespan, and cost can be accomplished. The performance analysis of the HHO-MOTSA tech-
nique takes place using the CloudSim tool. The widespread simulation outcomes implied the 
effective TS solution of the HHO-MOTSA approach with other compared methods. 
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