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The new (2+1)-D shallow water wave equation is considered in this research. Two 
effective methods, namely the Kudryashov method and the Bernoulli sub-equation 
function method are used to construct the diverse exact wave solutions. The soli-
tary wave and singular wave solutions are obtained, The dynamic behaviors of the 
extracted wave solutions are unveiled graphically via MAPLE. 
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Introduction

Non-linear problems have become an increasingly important discipline, and the 
continuous maturity of modern science and technology has directly promoted the develop-
ment of non-linear partial differential equations (NPDE) in the field of physics and math-
ematics [1-3]. In practical applications, the NPDE can more accurately describe complex 
non-linear phenomena that exist in natural sciences and even social sciences. At present, 
theoretical knowledge of non-linear science is widely applied in the fields of fluid dynamics, 
crystals, non-linear fiber optic communication, and plasma research [4-6]. By establishing 
non-linear equations and analyzing the analytical solutions of equation models, we gradually 
understand the essence of these non-linear phenomena. Therefore, solving NPDE through 
appropriate methods has become increasingly important in the study of non-linear science. 
By now, different effective approaches have been presented to solve the NPDE, for instance 
the Hirota bilinear method [7, 8], trial equation approach [9, 10], general integral method [11, 
12], variational method [13, 14], Backlund transformation [15, 16], unified method [17, 18] 
and many others [19-21]. In this work, we aim to probe the new (2+1)-D shallow water wave 
equation as [22]:

3 3 0yt xxxy xx y x xy xx yy xyu u u u u u u uα β γ+ − − + + + = (1)
where u = u(x, y, t), and α, β, and γ are non-zero constants. In this work, we will use two meth-
ods to explore the exact wave solutions of eq. (1). 

The exact wave solutions
To develop the exact wave solutions of eq. (1), we take the transformation:
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( ) ( ), , ,u x y t U mx ny ktξ ξ= = + + (2)
where m, n, and k are the non-zero real constants. Applying eq. (2), eq.(1) becomes:

( )3 (4) 2 2 26 0m nU nk m n mn U m nU Uα β γ ′′ ′′ ′+ + + + − = (3)
where

  

( )
4 2

4
4 2

d d d, ,
dd d

U U UU U U
ξξ ξ

′′ ′= = =

Integrating eq. (3) once and setting the constant of integration as zero gives:

( ) ( )23 2 2 23 0m nU nk m n mn U m n Uα β γ′′′ ′ ′+ + + + − = (4)

The Kudryashov method

By the Kudryashov method [23, 24], there is the auxiliary function:
2′Φ = Φ −Φ (5)

where Φ = Φ(ξ) , Φ′ = dΦ/dξ and there is the solution:
1

1 eξ
Φ =

+
(6)

It is assumed that eq. (4) admits the solution:

( ) 2
0 1 2

0

.....
p

i p
i p

i

U ξ ε ε ε ε ε
=

= Φ = + Φ + Φ + + Φ∑ (7)

Inserting it into eq. (4) and balancing U″ and (U′)2 yields:
3 2 2p p+ = + (8)

which leads to:
1p = (9)

Then there is:
( ) ( )0 1U ξ ε ε ξ= + Φ (10)

Taking it into eq. (4) and collecting the coefficients of the different terms Φ j  
(j = 0, 1,.., 4) to be zero give:

2 3 2

1 2 , m m n n mnm k
n

α β γε + + +
= = − (11)

Then we can get the exact wave solution of eq. (1) as:

( ) 2 3 20
2, ,

1 e
m m n n mnmx ny t

n

mu x y t
α β γ

ε
+ + +

+ −
= +

+
(12)

The Bernoulli sub-equation function method

By the Bernoulli sub-equation function method [25], it is assumed eq. (4) has the 
solution:

2
0 1 2

0

....
p

i p
i p

i

U S S S Sε ε ε ε ε
=

= = + + + +∑ (13)
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There is:
KS bS dS′ = + (14)

which admits the solutions as:

( ) ( )

1
1

1
,

e

K

b K
d cS b d
b ξ

ξ
−

−

 
= − + ≠ 
 

(15)

( )
( ) ( ) ( )

( )

1
11

1 1 tanh
2

1
1 tanh

2

Kb K
c c

S
b K

ξ

ξ
λ

− − 
− + +  

  =  − 
 −  
   

(16)

where c ∈ R, b ≠ 0, d ≠ 0, K ∈ R – {0, 1, 2}. The S = S(ξ) is the Bernoulli differential polyno-
mial. The relation of K and p can be obtained through taking eqs. (13) and (14) into eq. (4) via 
balancing U″ and (U′)2 as:

1K p= + (17)
When K = 3, p = 2, eq. (13) becomes:

2
0 1 2U S Sε ε ε= + + (18)

Substituting it into eq. (4) and setting the coefficients of S j (j = 0, 1,.., 8) to be zero 
yields:

 

2 3 2

1 2
40, 4 , m bm n n mndm k

n
α β γε ε + + +

= = = −

Case 1: For b ≠ 0, we get the exact wave solution as:

( )

2 3 2

0

42

4, ,

m bm n n mnb mx ny t
n

dmu x y t
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b

e
α β γ

ε

 + + +
+ −  

 

= +
 
 
− + 
 
  

(19)

Case 2: For b = d, we get the exact wave solution as:

( )
( ) ( )

2 3 2

0 2 3 2

44 1 tanh

, ,
41 1 tanh

m bm n n mnmb b mx ny t
n

u x y t
m bm n n mnc c b mx ny t

n

α β γ

ε
α β γ

   + + +
− − + −         = +

   + + +
− + + − + −         

(20)

Results and discussion

In this section, we will unveil the performances of the attained wave solutions with 
the help of the MAPLE.

When we take ε0 = 1, m = 1, n = 1, α = 1, β = 1, and γ = 1, the outlines of eq. (12) in 
the interval x, y ∈ [–10, 10] are unfolded in fig. 1. It is obvious that the shape is the anti kink 
solitary wave.
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Figure 1. The outlines of eq. (12)

Figure 2 displays the behaviors of eq. (19) for ε0 = 1, m = 1, n = 1, α = 1, β = 1, 
γ = 1, b = 1, d = 2, c = –1. Here we can discover that the waveform is the anti-solitary wave. For 
ε0 = 1, m = 1, n = 1, α = 1, β = 1, γ = 1, b = 1, and c = –1, we depict the behaviors of eq. (20) in 
fig. 3, which shows that the wave is the singular wave. 

 

Figure 2. The outlines of eq. (19)

Figure 3. The outlines of eq. (20)

Conclusion

This work has probed some new wave exact solutions to the new (2+1)-D shallow wa-
ter wave equation by taking two powerful tools, namely Kudryashov method and the Bernoulli 
sub-equation function method. The solitary wave and singular wave solutions were obtained. 
MAKING use of the MAPLE, the outlines of the extracted wave solutions are presented graph-
ically.
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