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The central orientation of this work is to plumb the (2+1)-D Konopelchenko-Du-
brovsky equation that is utilized widely to describe certain non-linear phenomena 
in the field of the fluid mechanics. Two effective methods namely the variational 
method and the energy balance theory are employed to construct the periodic wave 
solutions. As predicted, the results extracted by these two approaches are almost 
identical, which is anticipated to offer some new viewpoints to the exploration of 
the periodic wave theory in physics.
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Introduction

A good many kinds of complex problems in nature can be described and modeled by 
the non-linear partial differential equations (NPDE) [1-5]. However, because some basic prop-
erties of linear differential equations are no longer tenable in non-linear differential equations, it 
is difficult to use a unified method to solve the NPDE [6-8]. Therefore, for a long time, solving 
the exact solutions of NPDE has been a hot topic for researchers [9-12]. In this study, we will 
look into the (2+1)-D Konopelchenko-Dubrovsky equation (KDE) [13,14]:
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where ϕ = ϕ(x, y, t), φ = φ(x, y, t), and a and b are the non-zero real parameters. Equation (1) was 
proposed by Konopelchenko and Dubrovsky [15] in 1984 and was used extensively to model 
complex phenomenon in fluid mechanics. Some different efficacious approaches have been 
adopted to deal with eq. (1) such as the extended F-expansion method [16], modified auxiliary 
equation approach [17], modified simplest equation method [18], tanh-sech method [19], im-
proved tanh function approach [20], mapping approach [21] and others [22-25]. In this paper, 
we aim to construct the periodic wave solutions (PWS) of eq. (1) by taking advantage of the 
variational method (VM) and energy balance theory (EBT). 
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The variational principle and the Hamiltonian

For obtaining the periodic solutions, we first apply the traveling waves transforma-
tions for eq. (1):

( ) ( ) ( ) ( ) 0, , , , , ,x y t x y t x y cyφ φ η ϕ ϕ η η η= = = + + + (2)
Then, we obtain:
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′ ′=
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Taking a integration of the second equation in eq. (3) yields:
φ ϕ= (4)

Taking it into the first equation of eq. (3), then integrating the obtained equation one 
and taking the integration constant as zero, we get:

( )
2

2 333 3 0
2 2

ac b aφ φ φ φ  ′′− − + + − = 
 

(5)

Then the variational principle can be established by manipulating the semi-inverse 
approach [26-29]: 

( ) ( ) ( )
2
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2 2 8 2
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∫ (6)

For simplicity, we re-write eq. (6) as:

( ) ( )22 3 4 1 d
2

J m n kφ φ φ φ φ η ′= − + + 
 ∫ (7)

where
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eq. (7) can be written

( ) ( ) ( )22 3 4 1 d d
2

J m n kφ φ φ φ φ η η ′= − + + = Ξ −Θ 
 ∫ ∫ (8)

where Ξ is the kinetic energy and Θ – the stands for the potential energy:

( )21
2
φ′Ω = (9)

2 3 4m n kφ φ φΘ = − + − (10)
Thus we can get the system’s Hamiltonian:

( )2 2 3 41
2

m n kφ φ φ φ′Η = Ω+Θ = − + − (11)

The periodic wave solutions

The variational method

To seek the PWS of eq. (1) via the VM [30, 31], we postulate the periodic solution of 
eq. (5) is:
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( ) ( )cosφ η ωη= Ξ (12)
Substituting it into eq. (7), we have:
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By the VM, there is:
d 0
d
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(14)

That is:
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The expression can be obtained:
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which leads to:
28 3 2n k mω Ξ − πΞ − π

=
π

(17)

Thus, the periodic solution of eq. (5) can be:

( )
28 3 2cos n k mφ η η

 Ξ − πΞ − π = Ξ
 π 

(18)

Finally, we can attain the PWS of eq. (1):

( ) ( ) ( )
2

0
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where
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The energy balance teory

To apply the EBT [32], the periodic solution of eq. (5) is assumed:
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( ) ( )cos , 0φ η ωη ω= Ξ > (20)
Based on the Hamiltonian eq. (11), we can get the Hamiltonian constant :

2 3 4
0 m n kΗ = Ω+Θ = − Ξ + Ξ − Ξ (21)

The EBT tells that the energy of the system keep unchanged with the η changes:

( ) ( ) ( ) ( )2 2 3 4
0

1 sin cos cos cos
2

H m n k Hω ωη ωη ωη ωη= Ω+Θ = −Ξ − Ξ + Ξ − Ξ =               (22)

which is:
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(23)

Without loss of generality, here we set:

4
ωη π

= (24)

such that
2 2 3 4

2 3 41 2 2 2 2
2 2 2 2 2
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(25)

which leads to:

( ) 24 2 3 2n k mω = − Ξ − Ξ − (26)

Obviously, we can discover that eq. (26) has a well agreement with eq. (18), this 
strongly confirms the two method are correct and reliable. By eq. (26), the PWS to eq. (1) is 
found as:

( ) ( ) ( ) ( )2
0, , , , cos 4 2 3 2x y t x y t n k m x y ctϕ φ η = = Ξ − Ξ − Ξ − + + +  

(27)

where
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2 2 8

am c n b a k = − = + = 
 

Conclusion

The (2+1)-D KDE is explored in this paper. By applying the VM and EBT, the peri-
odic wave solutions are obtained. And it finds that the two wave solutions extracted by the two 
methods have a well agreement. The outcomes reveal that the proposed methods are correct 
and efficacious, and are anticipated to provide some new ideas to the research of the periodic 
wave theory.
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