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In this study, the Benjamin Ono equation which acts a key role for the shallow wa-
ter waves is explored. Two effective approaches namely the Bernoulli sub-equation 
function method and simple frequency formulation method are adopted to extract 
some different wave solutions, which include the bell shape solitary, anti-kink sol-
itary and periodic wave solutions. Correspondingly, the outlines of the diverse 
wave solutions are unveiled graphically through MAPLE.
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Introduction

The exact solutions of non-linear evolution equations can provide more physical in-
formation in the field of non-linear research and offer deeper insights into the study of prob-
lems at the physical level [1-3]. Therefore, solving non-linear evolution equations has always 
been a research hotspot [4-6]. Up to now, a lot of the effective and powerful methods have 
been developed, for example the Darboux transformation technique [7, 8], variational method  
[9, 10], Kudryashov’s approach [11, 12], Backlund transformations [13, 14], Sardar subequa-
tion method [15, 16], Hirota bilinear method [17, 18], generalized auxiliary equation [19, 20], 
generalized (G′/G)-expansion method [21, 22], and so on [23-26]. In this study, we aim to study 
the Benjamin Ono equation as [27]:

( )2 0tt xxxxxx
m nφ φ φ+ + = (1)

where ϕ = ϕ(x, t), and m and n are non-zero real numbers. Here, eq. (1) can model the internal 
waves in deep water. The aim of this work is to develop the diverse wave solutions for eq. (1). 

The solitary wave solutions 

To find the solitary wave solutions, we consider the transformation:
( ) ( ), ,x t x tφ λ λ α β= Φ = + (2)

where α and β are non-zero constants. Substituting it into eq. (1) yields:
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( ) ( )42 2 2 2 4 0m nβ α α′′′′Φ + Φ + Φ = (3)
where
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Integrate eq. (3) twice and set the integration constant as zero yields:
2 2 2 2 4 0m nβ α α ′′Φ + Φ + Φ = (4)

By the Bernoulli sub-equation function method [28], it is assumed eq. (4) has the 
solution:
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there is:
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which admits the solutions:
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where c ∈ R, b ≠ 0, d ≠ 0, K ∈ R – {0, 1, 2}. The P = P(λ) is the Bernoulli differential polyno-
mial. The relation of K and s can be found by putting eqs. (5) and (6) into eq. (4) via balancing  
 Φ″ and Φ2:

2 2K s= + (9)
When K = 3, s = 4, eq. (5) becomes:

2 3 4
0 1 2 3 4R R R Rµ µ µ µ µΦ = + + + + (10)

Substituting it into eq. (4) and setting the coefficients of Rj (j = 0, 1,.., 8) to be zero, 
we have:
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Case 1: For b ≠ d, we get the solitary wave solution:
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Case 2. For b = d, we the solitary wave solution:
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(12)

The periodic wave solutions

To apply the simple frequency formulation, we can re-write eq. (4):
2 2

2
4 2 0m
n n

β
α α

′′Φ + Φ + Φ = (13)

According to the simple frequency formulation, there is the expression:

( ) 0f′′Φ + Φ = (14)
with
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Φ = Φ + Φ (15)

It is assumed that the solution of eq. (13) as:
( )cos , 0Λ ϖλ ϖΦ = > (16)

Then the frequency amplitude relationship can be obtained as [29]:
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Φ (17)

Then the periodic wave solution of eq. (1) can be obtained as:

( ) ( )
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4 2, cos mx t x t
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(18)

Results and discussion

The purpose of this part is to display the outlines of the attained wave solutions and 
give the discussion.

If we use the parameters as µ0 = –1, b = 1, d = –1, m = 1, α = 1, c = 1, the shapes of 
eq. (10) are revealed in the form of the 3-D plot, density plot and the 2-D curve in fig. 1, which 
indicates the wave is the anti kink solitary wave. Figure 2 depicts the dynamic behaviors of 
the eq. (11) with µ0 = –1, b = –1, c = –1, m = 1, α = 1. Obviously, the wave structure is the bell 
shape solitary wave. 

When the parameters are choosen as Λ = 0.5, m = 1, n = 1, α = 1, and β = 1, the be-
haviors of eq. (6) are unfolded in fig. 3, here we can find the wave is a perfect periodic wave.
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Figure 1. The dynamic behavior of eq. (11)

Figure 2. The dynamic behavior of eq. (12)

Figure 3. The dynamic behavior of eq. (18)

Conclusion

This work has probed the Benjamin Ono equation equation for the shallow water 
waves. Applying the Bernoulli sub-equation function method and simple frequency formula-
tion method, different wave solutions like the bell shape solitary, anti-kink solitary and periodic 
wave solutions were obtained. Additionally, the dynamics of the extracted wave solutions were 
presented with the help of MAPLE.
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