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The stick-slip vibration problem in downhole drilling has become prominent, se-
riously affecting production efficiency and equipment safety. Therefore, this study
proposes an intelligent stick-slip vibration recognition method based on downhole
data. Utilizing downhole data aims to address the issues of strong subjectivity and
low accuracy in traditional stick-slip vibration monitoring. First, time-domain pre-
processing of the raw vibration signals is conducted, including outlier removal, and
noise reduction filtering. Then, time-frequency analysis is performed using Fourier
Transform to extract deep features from the data. A stick-slip vibration classifica-
tion evaluation system is constructed using the stick-slip index method. Finally, an
intelligent stick-slip vibration recognition model is established based on the long
short-term memory algorithm, integrating frequency-domain and time-domain
features as input features to achieve accurate monitoring of stick-slip vibration
levels. Measured data from an oilfield in China were selected for comparison. The
results show that the model achieves an accuracy of 85.8%, effectively identifying
stick-slip vibrations and demonstrating good application potential in the field.
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Introduction

As the oil and gas drilling industry advances toward high difficulty well types such as
deep wells, ultra-deep wells, and extended reach wells, the complexity of operations increases,
along with greater challenges and higher costs compared to conventional drilling [1]. Con-
sequently, higher demands are placed on the safety and efficiency of drilling operations. The
drill string is subjected to complex dynamic loads, causing vibrations to occur constantly. Drill
string vibrations not only reduce drilling efficiency but also significantly increase operational
risks and costs. Therefore, promptly and accurately identifying drill string vibrations is crucial
for safe and efficient drilling operations [2].
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With the development of downhole measurement tool technology, it has become
feasible to use downhole drilling data and data-driven models to monitor drill strings. Hegde
et al. [3] proposed a new method that classifies vibration-based metrics using drilling operation
parameters, developing a stick-slip index (ISS). Baumgartner et al. [4] developed a simple
dynamic model to study high frequency acceleration measurement outputs under rotary and
stick-slip vibrations. Tang ef al. [5] conducted time-domain and frequency-domain analyses on
near-bit stick-slip data, extracted key feature vectors. Chen et al. [6] proposed a stick-slip vibra-
tion risk assessment method based on factor analysis (FA) and support vector machine (SVM)
to evaluate the severity of drill string stick-slip vibrations.

This study aims to address the issues of high subjectivity and low accuracy in tradi-
tional stick-slip vibration monitoring that relies on surface parameters by utilizing time-fre-
quency analysis algorithms combined with intelligent recognition models. First, a time-fre-
quency analysis algorithm is used to reveal the dynamic response patterns between triaxial
acceleration time-frequency signals and drill bit vibration states, and based on these patterns, a
stick-slip vibration classification evaluation index is constructed.

Time frequency processing method for
high frequency dynamic signals

Time domain signal preprocessing

Raw vibration signals acquired during data collection often contain various types of
noise. Additionally, the non-linearity of measurement sensors can significantly impact the final
results. To improve the reliability of vibration signal analysis, preprocessing is required before
the analysis. Preprocessing tasks mainly include pre-filtering, zero-mean normalization, anom-
aly removal, and trend elimination. These tasks are not all mandatory, and in practical applica-
tions, different methods can be selected based on the actual measurement signals.

When signals need to be smoothed or unwanted frequency components need to be
suppressed, filtering methods can be used. To avoid frequency aliasing caused by not meeting
the sampling theorem, a low pass filter can be employed to limit the bandwidth of the raw signal
while also reducing high frequency noise.

Anomaly removal. During signal collection, anomalies may occur due to unpredict-
able external factors or temporary instrument failures. These anomalies can significantly affect
the analysis results, particularly for high frequency components, and must be removed. In this
study, an anomaly removal method based on standard deviation is employed. This method uses
the criterion of whether data values exceed three times the standard deviation. If the signal’s
zero-mean value falls within the confidence interval, its confidence level can reach 99.74%.
Anomalies are removed by averaging the values of the two adjacent points.

Noise reduction. High frequency vibration data often contains substantial noise. This
noise not only obscures the real information in the signal but can also lead to misjudgments
during subsequent data analysis and fault diagnosis. Therefore, denoising is required for raw
acceleration data. In this study, wavelet denoising is employed. Using three levels of wavelet
decomposition and reconstruction, the db6 wavelet function is chosen with a threshold set to
0.5. A comparison of data before and after wavelet denoising is shown in fig. 1.

Time-frequency analysis method based on Fourier transform

The non-stationarity of near-bit signals leads to significant variations in their spec-
tral characteristics, necessitating frequency-domain analysis. In the frequency domain, Fourier
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Figure 1. Comparison of data before and after wavelet noise reduction

transform (FFT) can be used to convert signals into frequency-domain representations, allow-
ing for a better understanding of the spectral characteristics of the signals.

Fourier transform is a mathematical method for converting a time (or spatial) signal
into the frequency domain, enabling the analysis of the signal’s frequency components. By
applying Fourier transform, a signal can be decomposed into a linear combination of sinusoidal
and cosinusoidal waves of different frequencies, amplitudes, and phases, revealing the frequen-
cy characteristics of the signal.

The core concept of Fourier transform is that any complex periodic or non-periodic
signal can be decomposed into multiple sinusoidal and cosinusoidal components with different
frequencies, amplitudes, and phases. Through Fourier transform, a signal is converted from the
time domain to the frequency domain, making it easier to analyze its frequency components.

By performing Fourier transform on the spectrum of a signal, amplitude and phase
information for different frequency components can be obtained, providing a better understand-
ing of the signal’s spectral characteristics. By conducting both time-domain and frequency-do-
main analysis of near-bit signals, significant periodic changes in the signal can be identified.
The result is shown in fig. 2. These analytical results form an important basis for subsequent
modelling and evaluation.
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Figure 2. Comparison of signals before and after time-frequency processing
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Stick-slip vibration grading evaluation system

Stick-slip vibration is one of the most severe vibration problems encountered during
drilling. When stick-slip vibration occurs, the rotational speed of the downhole drill string fluc-
tuates significantly, even reaching negative values, and the downhole rotational speed can reach
2-3 times the driving speed. This imposes significant stress on downhole drilling tools. The data
used in this study includes detailed rotational speed information, enabling the grading evalua-
tion of stick-slip vibration using the SSI. The calculation of the SSI is given:

SSI — rpmmax _rpmmin 1
&)
2rpm,,

where rpm,,;, is the maximum rotational speed, rpm,,,, — the minimum rotational speed, and
rpm,,, is — the average rotational speed.
The grading criteria for stick-slip vibration:

0< 887 <1 Torsional vibration
SSI =<1< 881 <3  Moderate stick-slip vibration 2
SSI >3 Severe stick-slip vibration

Intelligent recognition model for stick-slip vibration

Long short-term memory (LSTM) networks are a specialized form of recurrent neural
networks (RNN) designed to address the common issues of gradient vanishing and gradient
explosion when processing long-sequence data with traditional RNN. The LSTM can retain
information over long time sequences, making it widely applicable to time-series data analysis
and prediction tasks.

The key component of LSTM is its memory cell, which is structured around three
primary gates — the input gate, forget gate, and output gate. Each gate is responsible for con-
trolling the flow and storage of information. These gates allow LSTM to effectively decide
which information should be retained in memory, which should be forgotten, and which should
be passed to the next time step.

To improve the efficiency and accuracy of the LSTM model, selecting appropriate fea-
tures is crucial. In addition frequency-domain features, time-domain features (e.g., mean, vari-
ance, peak values, efc.) can also be incorporated as input features. Based on practical scenarios,
features highly correlated with the severity of stick-slip vibration are chosen to train the LSTM.

To enhance training efficiency and accuracy, this study adopts the Adam optimization
algorithm (adaptive moment estimation), which is widely used in deep learning. The algorithm
dynamically adjusts learning rates to adapt to different training conditions. The intelligent rec-
ognition model for stick-slip vibration conditions is depicted in fig. 3.
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Results aﬂalysis Confusion matrix

When training the model using real drill- 1000

ing data from two wells in a domestic oil field,
the LSTM model demonstrated high accuracy.
After training and testing the model, the con-
fusion matrix is shown in fig. 4. The model
achieved an accuracy of 85.8%, a precision of
78.7%, and a recall rate of 83.2%. These results
indicate that the developed model exhibits ex-
cellent predictive performance and can effec-
tively identify stick-slip vibrations during the
drilling process. Class 1 Class 2 Class 3
To validate the advancement of the pro- Predicted label
posed model, this study established four ma- F.igure. 4. Classification results. of stic.k slip
chine learning models — random forest, XG- vCle ration levels: Class /- forsional vibration,
ass 2 — moderate stick-slip vibration, and
Boost, BP neural network, and LSTM — for . 3— heavy stick-slip vibration
comparative experiments. The effectiveness of
each algorithm was evaluated based on accuracy and recall metrics for identifying different
levels of stick-slip vibration. Under identical data preprocessing conditions, the four algorithms
were tested and compared, with the results shown in tab. 1.
Table 1. Comparison of model effects
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Algorithm Accuracy Precision Recall
Random Forest 0.749 0.624 0.715
XGBoost 0.778 0.662 0.737
BP 0.814 0.721 0.794
LSTM 0.858 0.787 0.832

The experimental results demonstrate that all these models exhibit high recognition
efficiency overall. Among them, the LSTM model outperforms the others in all evaluation
metrics, showcasing superior predictive performance. Compared to the conventional BP Neural
Network model, the LSTM model improved accuracy by 4.4% and precision by 6.6%. This
highlights the LSTM model’s suitability for handling complex time-dynamic data in drilling
operations and its ability to effectively extract localized data features.

Conclusion

This article constructs a monitoring method for drill string stick slip vibration based
on downhole data, using Fourier transform to extract temporal and frequency domain features
of downhole data and explore deep information in the data. The use of LSTM algorithm to
construct the mapping relationship between stick slip vibration and downhole parameters can
effectively explore the temporal characteristics of data and achieve accurate and efficient iden-
tification of stick slip vibration types. The current model has poor recognition performance for
severe stick slip vibration due to class imbalance, and data augmentation methods should be
considered in the future to solve this problem.
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