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Predicting the unsupported deformation behavior of a shaft is crucial for evaluat-
ing the stability of the rock mass, selecting an appropriate support scheme. Ran-
dom forest, XGBoost, LightGBM, and K-nearest neighbors regression models were 
trained for database, and their accuracy was evaluated. It aimed to examine the 
effects of various parameters on shaft deformation, including the maximum tan-
gential stress of the surrounding rock, elastic modulus, Poisson’s ratio, cohesion, 
internal friction angle, and rock mass compressive strength. The results indicate 
that the coefficient of determination for random forest model is outperformed the 
other models. The importance of the characteristic parameters, in order, is cohe-
sion, rock mass compressive strength, elastic modulus, rock compressive strength, 
internal friction angle, Poisson’s ratio, and maximum tangential stress of the sur-
rounding rock.
Key words: deformation, prediction method, soft rock, deep shaft,  

machine learning

Introduction

With the deepening of underground engineering construction, shaft projects under 
soft rock conditions are increasingly facing challenges in deformation control [1]. During the 
excavation of the shaft, varying degrees of deformation often occur, posing a significant threat 
to both the shaft’s structural integrity and the safety of personnel [2, 3]. Therefore, the as-
sessment and prediction of surrounding rock stability are crucial. Currently, the main methods 
for predicting shaft deformation in mining areas include data analysis-based machine learning 
methods, mechanics-based theoretical analysis methods, and empirical parameter-based model 
prediction methods. Spesivtsev et al. [4] proposed a machine learning-based approach by con-
structing and training an ANN, utilizing a dataset generated from a full-scale transient shaft 
flow numerical simulator, to develop a predictive model for multi-phase shaft flow in order to 
forecast the key parameter of bottom hole pressure. Wu et al. [5] introduced a hybrid prediction 
framework based on RF-RFE and BO-NGBoost, aiming to accurately predict tunnel deforma-
tion induced by adjacent foundation pit construction. Xu et al. [6] proposed an analytical solu-
tion for the vertical additional forces in the shaft, providing a basis for subsequent shaft wall 
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deformation predictions. Han et al. [7] established a dynamic prediction model for the shaft 
using the probabilistic integral method and the Knothe time function. Tang et al. [8] applied 
a support vector machine model to establish a deformation-time relationship model for shaft 
deformation and disaster prediction. Khan et al. [9] utilized mechanical analysis and numerical 
simulation methods to achieve rapid analysis of shaft failure and incorporated neural networks 
to establish a neural network prediction system for shaft collapse. Yuan et al. [10] innova-
tively combined machine learning technology with traditional physical models, developing a 
grey-Markov model by integrating the grey prediction model and the Markov model to predict 
surface subsidence in mining areas. Bai et al. [11] developed a real-time updating model based 
on fuzzy multi-attribute decision-making, integrating expert evaluations and data analysis to 
provide a new method for assessing the risk of large deformations in soft rock. Feng et al. [12]  
conducted a deep investigation into the deformation mechanisms of surrounding rock during 
SBM tunneling through numerical simulations and proposed an innovative analysis model, 
which incorporates additional vertical stress to consider the extrusion effect of SBM, thereby 
providing a more accurate calculation of the radial deformation of the shaft’s surrounding rock.

This study constructs a shaft deformation prediction model for soft rock based 
on four machine learning algorithms: random forest, XGBoost, LightGBM, and K-nearest 
neighbors regression. On this basis, the deformation risk of the shaft is evaluated, and the 
prediction results are compared with measured values, validating the reliability of the shaft 
prediction model. This provides accurate and reliable shaft deformation forecast informa-
tion, offering significant reference value for shaft repair, remediation, and safety manage-
ment.

Construction of soft rock deformation prediction  
model based on machine learning

The deformation of soft rock shafts is influenced by various factors, including the 
intrinsic properties of the rock and external environmental conditions, as well as loading sce-
narios. The intrinsic characteristics affecting shaft deformation include the elastic modulus, 
Poisson’s ratio, cohesion, internal friction angle, and rock compressive strength. The maximum 
tangential stress of the surrounding rock and the compressive strength of the rock mass are 
considered external characteristics. To investigate the intrinsic and extrinsic factors influencing 
the deformation of soft rock deep shafts, multiple numerical simulations were conducted using 
FLAC 3-D to explore the system’s response under different parameter combinations. Howev-
er, compared to actual values, the results of numerical simulations often overlook non-linear 
phenomena, complex boundary conditions, and human factors involved in data acquisition. To 
enhance the realism and quality of the dataset, noise was added during the processing phase. 
Utilizing the new dataset, four models were selected for training and accuracy evaluation: ran-
dom forest, extreme gradient boosting, optical gradient enhancement mechanism, and K-near-
est neighbors regression. The optimal algorithm was then chosen for predicting the deformation 
of the soft rock deep shaft. The flowchart illustrating this process is shown in fig. 1.

Data preprocessing

The dataset is derived from numerical simulation results based on geological data 
from a coal mine in Northwest China. By varying the intrinsic characteristics of the model, ten 
distinct numerical models have been created to simulate the external characteristics and defor-
mation of the shaft. To account for uncertainties in real data-such as the influence of the external 
environment and human measurement errors-noise is introduced to enhance the robustness of 
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the simulation results and reduce the model’s sensitivity to uncertainty. Since characteristic val-
ues are typically obtained through sensors, multiplicative noise is employed to either amplify 
or diminish the numerical simulation results, thereby generating a noise dataset, as illustrated 
in eqs. (1) and (2). For instance, the noise before and after processing for the elastic modulus 
is depicted in fig. 2.

, (1 ), (0 0.15)x x N′ = + η η (1)
where x′ is noise dataset, x – original dataset, and η – noise figure. 

Figure 2. Original dataset and noisy dataset

In order to improve numerical stability, accuracy and convergence speed, the noisy 
dataset is normalized by mean variance, thereby reducing the influence of outliers and im-
proving the generalization ability of the model, eliminating the influence of dimension. The 
normalization equation:

xx
′ −′′ =

µ
σ

(2)

where x″ is the homogenous dataset, µ – the mean, and σ – the standard deviation. 

Constructing machine learning models

To enhance the model’s ability to generalize and accurately evaluate its performance, 
80% of the dataset is designated as the training set. In comparison, the remaining 20% is re-
served for hyperparameter tuning and model evaluation. The dataset is divided into 10 equal 

Figure 1. Floe chart
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parts using 10-fold cross-validation. In each iteration, one part serves as the validation set, and 
the other nine parts are utilized as the training sets. This process is repeated nine times, with a 
different part selected as the validation set each time. The average performance across all folds 
is then calculated to maximize the use of the dataset and minimize the bias introduced by a 
single partition.

Bayesian optimization is employed to construct a Gaussian process that approximates 
the objective function. The Gaussian process model assumes that the objective function values 
corresponding to all input points follow a joint Gaussian distribution, as shown in eq. (3). New 
sampling points are selected based on existing data and Bayesian inference, aiming to minimize 
the number of evaluations while identifying the optimal solution for the objective function. 
Table 1 presents the range of hyperparameters selected for four machine learning algorithms:

2
* * * *| , , ~ ( , )f N µ σX f x (3)

where f*|X, f, x* is the conditional and N(µ*, σ2
*) – the normal distribution. 

Table 1. Search range of selected hyperparameters
Model Hyperparameters Range

Random forest

n_estimators [5, 100]
max_depth [1, 30]

min_samples_split [2, 12]
max_features [0.1, 0.4]

min_samples_leaf [1, 10]

XGBoost/
LightGBM

n_estimators [50, 500]
learning_rate [0.01, 0.5]
max_depth [3, 10]

min_child_weight/
min_child_samples [1, 10]

colsample_bytree [0.5, 1]
subsample [0.5, 1]
reg_alpha [0.01, 10]

reg_lambda [0.01, 10]

K-nearest 
neighbors 
regression

n_neighbors [1, 30]
weights ["uniform","distance"]
metric ["euclidean","manhattan", "minkowski"]

algorithm ["ball_tree","kd_tree","brute"]

Evaluating the learning effectiveness of a machine learning model is a crucial step in 
ensuring that the model can effectively address problems and make accurate predictions. Con-
sequently, the RMSE, MAE, and coefficient of determination, R2, are employed to assess the 
model’s learning performance, as illustrated:
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where yi is the true value, y– – the average of the true values, and y^i – the predicted value distri-
bution of the predicted point.

Results and discussion

Hyperparameter tuning plays a crucial role in optimizing the performance of machine 
learning models. Table 2 shows the performance evaluation of predicting wellbore deformation 
values using a noisy dataset following Bayesian optimization.

Table 2. Performance evaluation

Date Evaluation
 indicators

Random 
forest XGBoost LightGBM K-nearest neighbors 

regression

Testing datset
RMSE 0.0012 0.0016 0.0019 0.0013
MAE 0.0006 0.0009 0.0012 0.0007

R2 0.9862 0.9785 0.9680 0.9843

Training datset
RMSE 0.0006 0.0015 2.0188 0.0014
MAE 0.0003 0.0007 0.0007 0.0006

R2 0.9953 0.9820 0.9795 0.9810

10-fold  
cross-validation

datset

RMSE 0.0015 0.0018 0.0022 0.0018
MAE 0.0007 0.0009 0.0013 0.0008

R2 0.9775 0.9666 0.9470 0.9662

The smaller the RMSE and MAE, and the closer the R² is to 1, the more accurate the 
model's predictions become. As shown in tab. 2, the R² for the four machine learning mod-
els exceed 0.94, indicating excellent predictive performance. Among these models, the ran-
dom forest (RF) algorithm stands out as the most exceptional. In the testing set, R² = 0.9862,  
RMSE = 0.0012, and MAE = 0.0006. In the training set, R² = 0.9953, RMSE = 0.0006, and  
MAE = 0.0003. In the 10-fold cross-validation, R² = 0.9775, RMSE = 0.0015, and MAE = 0.0007.  
This data indicates that the performance evaluations of the training set, testing set, and cross-val-
idation set are consistent, suggesting that the model is not overfitting. The hyperparameter val-
ues for the RF model were n_estimators = 16.57, max_depth = 19.61, min_samples_split = 2.38, 
max_features = 0.26, and min_samples_leaf = 1.07. The prediction results are shown in fig. 3.

Combined with fig. 4, it is evident that the various parameters influencing wellbore 
deformation can be ranked in order of importance cohesion, rock compressive strength, elastic 
modulus, internal friction angle, Poisson’s ratio, and the maximum tangential stress of the sur-
rounding rocks. Cohesion and rock compressive strength are critical factors affecting deforma-
tion behavior, as they significantly contribute to the structural integrity of the rock mass. The 
higher these values, the greater the external load the rock can withstand, resulting in reduced 
plastic deformation. Additionally, the elastic modulus, internal friction angle, and Poisson’s 
ratio are also important factors that influence deformation behavior and enhance the overall 
stability of the structure. Although the maximum tangential stress of the surrounding rock has 
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a minimal effect on wellbore deformation, it remains a crucial consideration during stability 
assessments to prevent structural failure caused by local stress concentrations.

Figure 3. True value and predicted value Figure 4. Importance analysis of  
feature parameters

Conclusion

An algorithmic model for predicting soft rock wellbore deformation was developed 
using a machine learning framework, achieving a determination coefficient of up to 0.9775. 
This model is designed to forecast unsupported wellbore deformation in deep vertical shafts. 
The key factors were analyzed and ranked: cohesion, rock mass compressive strength, elastic 
modulus, rock compressive strength, internal friction angle, Poisson’s ratio, and the maximum 
tangential stress of surrounding rocks.
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Nomenclature
f*|X, F, x* – the conditional
N(µ*, σ*

1) 	 – normal distribution
yi  – true value
y ̄  – the average of the true values
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