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In the paper, we first use G transform decomposition method to solve the non-linear 
fractional Fisher equation, and verify the effectiveness through concrete examples. 
Then we use Natural transform decomposition method to solve non-linear frac-
tional KdV equation and prove the solution surface of fractional order converges 
to integer order solution surface when exponent σ → 1.
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Introduction

The Adomian decomposition method (ADM) is proposed by American mathematical 
physicist George Adomian in the 1980's, it can decompose the original equation into linear part 
and non-linear part, and express the solution in infinite series. The research indicates that the 
ADM offers advantages of reduced error and enhanced precision compared to traditional meth-
ods in solving differential equations. Daftardar-Gejji et al. [1] solved a class of fractional order 
differential equations with ADM and obtained its convergence. On the basis of traditional ADM, 
Luo [2] proposed the two-step ADM, which has the characteristics of less error and higher preci-
sion. Duan et al. [3] and Saelao et al. [4] solved separately non-linear fractional ODE and linear 
and non-linear Klein-Gordon equations by using an improved ADM. Optimized and improved 
by many experts and scholars, Shah et al. [5] obtained analytical solutions of fractional order 
dispersive partial differrential equations by Laplace-Adomian decomposition method (LADM) 
and Bushnaq et al. [6] obtained the solution of the non-linear Fisher differential equation by using 
natural transform decomposition method (NTDM).

Fisher equation [7] is of great significance in the fields of heat conduction, biology 
and ecology. In this paper, the non-linear fractional order Fisher equation is studied:
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where x, t is the time variable and space variable, σ – the fractional Caputo derivative, w(x, t) –  
the population density, and w(x, t) – wβ +1 (x, t) represents the population growth rate. When β 
> 1, w β (x, t) is a non-linear term, when population density is too large, its growth rate will de-
crease. Therefore, the Fisher equation can better reflect the trend of population change.

* Corresponding author, e-mail: wangfang1209@csust.edu.cn



Wang, F., et al.: Application of Adomian Decomposition Method to Fractional ... 
1376	 THERMAL SCIENCE: Year 2025, Vol. 29, No. 2B, pp. 1375-1381

The KdV equation describes the non-linear wave behavior propagating in the medi-
um. We consider non-homogeneous non-linear fractional order KdV equation:
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where N is a non-linear operator and g(x, t) is the source term.

Preliminary knowledge

Definition 1. [8, 9] For n – 1 < α < n, the α-order Caputo type fractional derivative of 
the function f(t) is defined:
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Definition 2. [10] For t ≥ 0, the G transform of f(x) is defined:
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Lemma 1. [10] The G transform of the n-order derivative of f(x):
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Lemma 2. [10] The convolution of the G transform is defined:

	 { } { } { }u G fg G f G g=α

Lemma 3. [10] The G transform of the p-order fractional derivative of f(t):

	
( ){ } { } ( )1

 
0 1

0 0

kn
p p

t p k
k t

f t
G D f t u G f u

u

−
−

− −
= =

= − ∑α

Definition 3. [11] u > 0, s > 0, the Natural transform of f(x) is defined:
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Lemma 4. [11] The convolution of Natural transform is defined:

	 ( )( ){ } ( ) ( )* , ,f g x uF s u G s u=N

Lemma 5. [6] For q ∈ N, α > 0, q – 1 < α ≤ q and N{w(x, t)}= R(x, s, r), the natural 
transform of the α-order fractional derivative of w(x, t) is defined:
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Using GTDM to solve non-linear fractional order Fisher equation

Theorem 1. For non-linear fractional order Fisher equation:
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where 0 < σ, η ≤ 1, α and β are non-zero constants, its solution can be expressed:
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Proof. Take G transform of eq. (1), we get:
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continue to inverse G transform of eq. (2), we obtain:
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and we obtain

	 0 0 0 1 1 0 0 1,Q w w Q w w w w= = +β β β

Let:
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Therefore, we get the solution wi of eq. (1) as shown in Theorem 1.
Since the analytical solution obtained by using GTDM to solve Fisher equation is the 

same as that obtained in [6], and [6] cites the conclusion of [12] to prove the convergence of this 
analytical solution, so the analytical solution obtained here converges.
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Example 1. Solving Fisher’s equation for α = 1, β = 1, η = 0.5: 
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where 0 < σ ≤ 1. 
Take G transform and inverse G transform of eq. (5), we have:
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Therefore, we get the solution shown in eq. (7) and figs. 1 and 2:
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Figure 1. When k = 5, the solution curve  
of eq. (7) corresponding to the different σ 

Figure 2. When σ = 0.5, the solution  
surface of eq. (7)
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Using NTDM to solve fractional partial differential equation

Theorem 2. For non-homogeneous non-linear fractional order KdV equation:
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where 0 < σ ≤ 1, N is the non-linear operator and g(x, t) – the source term, the solution is:
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Proof. Take natural transform and inverse natural transform of eq. (8), we have:
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Therefore, we get the solution wi of eq. (8) as shown in Theorem 2.
Example 2. Solving fractional dispersion KdV equation:
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where 0 < σ ≤ 1. 
Take natural transform and inverse natural transform of eq. (10), we have:
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let 
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and take the first five expansions of sin and cos, we get:
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Therefore, v0 is the first three terms of the previous formula, v1 can be expressed:
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Therefore, the solution of eq. (10):
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when σ = 0.5 and σ = 1, as shown in figs. 3 and 4, respectively. Combined with figs. 3 and 4, we 
verify the conclusion given in [5]. When the fractional exponent approaches the integer expo-
nent, the solution surface of fractional order converges to the solution surface of integer order.

Figure 3. When σ = 0.5, the solution  
surface of eq. (12)

Figure 4. When σ = 1, the solution  
surface of eq. (12)

Conclusion

In the paper, we used GTDM and NTDM to solve non-linear fractional order Fisher 
equation and KdV equation. It is also verified that when exponent σ → 1, the solution surface 
of the fractional order KdV equation converges to the solution surface of integer order. We will 
continue to explore the use of GTDM to solve more general Fisher equation in the future:
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