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Rockburst is a common mining hazard causing dynamic damage to coal and rock 
masses, posing significant threats to personnel and equipment safety. Various an-
alytical methods exist to assess impact risks, with microseismic monitoring sys-
tems playing a pivotal role due to their stability, dynamism, and continuity. This 
approach utilizes a dual residual connection and a deeply connected stack archi-
tecture to facilitate seasonal-trend predictions and enhance their interpretability in 
time series prediction tasks using a purely deep learning model. The time-frequency 
and total energy of microseismic events are predicted using the proposed approach, 
and a comparative experimental study is conducted on the time window lengths of  
M = 7 days and M = 4 days. The results indicate that the proposed approach effec-
tively predicts the evolution trend of microseismic event frequency, with minor dis-
crepancies between the predicted results and the actual monitoring values, showing 
its excellent prediction performance and generalization capability.
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Introduction

Rockburst typically refers to the mining-induced dynamic phenomena of damage in 
coal and rock masses surrounding coal mine roadways or working faces due to the instanta-
neous release of elastic energy under high stress conditions. This phenomenon is often accom-
panied by loud noises, the ejection of coal and rock masses into the working space, and air 
blasts [1]. The microseismic monitoring technique, offering advantages such as stability, 3-D, 
and continuous temporal and spatial data, can provide information on the location and energy of 
vibrations, among other metrics. Hence, it has been widely applied in monitoring and providing 
early warnings of dynamic hazards such as rockburst in coal mines. However, there is limited 
research on time-series quantitative early warning of rockbursts. These studies often utilize ac-
quired microseismic monitoring information solely for retrospective analyses of impact hazards 
[2, 3], resulting in poor timeliness and accuracy of impact hazard warnings. Nonetheless, the 
significance of these two aspects cannot be overlooked. Accurate and quantitative prediction of 
the time of high energy microseismic occurrences can significantly enhance the effectiveness 
of warnings and gain valuable time for hazard prevention and response.
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In the study of rockburst warnings across the temporal dimension, traditional time 
series analysis methods, including microseismic time-frequency analysis, time-energy analysis, 
autoregressive models, moving average models, and autoregressive moving average models 
[4-6], have yielded significant results in certain areas. For example, Lu et al. [2] developed a 
characteristic function that uses the variance of microseismic energy as a discriminative indi-
cator and predicted trends in microseismic energy release using the auto-regression integrat-
ed moving average models and threshold autoregressive models. This approach defined the 
time series variation trends of microseisms. Pei et al. [3] designed a 1-D convolutional neural 
network that inputs historical microseismic energy levels from a specified interval to predict 
microseismic energy levels for subsequent time phases. Qin et al. [7] decomposed and recon-
structed energy-time and frequency-time curves of the original microseismic data using modal 
decomposition techniques to extract feature information and trained a microseismic time series 
prediction model employing a deep neural network that integrates CNN-LSTM-GRU.

However, the internal operations of deep learning models often resemble a black 
box, leading to limited interpretability of the results. This study proposes a purely deep learn-
ing-based approach to focus on univariate regression problems in time series, such as predicting 
microseismic frequency and energy. It performs comparative analyses to determine how unit 
time series datasets of varying lengths adapt to the model and to optimize the optimal time 
window span. The model can filter out data noise and extract trend and periodic terms from the 
most significant time series data.

Materials and methods

Materials

The dataset chosen for this study’s deep learning time series prediction model com-
prises mining-induced microseismic activities recorded from January 1, 2024, to July 31, 2024, 
primarily collected from the 8302 working faces of the Xinjulong Coal Mine. The advanced re-
al-time acquisition and measurement integration microseismic monitoring system is utilized 
at the mine, where the deployed microseismic stations consist of uniaxial velocity sensors with 
a natural frequency of 1 Hz and a sampling rate set to 500 samples per second. Underground 
sensors are synchronized with surface timing, and six monitoring stations are strategically 
placed around the study area. As mining progresses in the working face, the positions of these 
stations are periodically adjusted toward the mining advancement, ensuring that the distance 
from the stations to the study area does not exceed 1 km. The lay-out of the scheme is illustrated 
in fig. 1. A uniform velocity model of 4000 m/s is employed for locating microseismic events. 
Comparisons between several known blasting locations and event location results indicated that 
the 3-D positioning errors in the X-, Y-, and Z-directions range from 20-40 m, 30-50 m, and  

Figure 1. Lay-out of 
microseismic motoring points 
and location results at the  
8302 working faces of the 
Xinjulong Coal Mine (January 
1, 2024 to July 31, 2024)
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40-80 m, respectively. Such accuracy meets the requirements for mine data analysis. A total 
of 12757 seismic events were recorded during the analysis period, with the majority occurring 
at an intermediate energy level of 103 J, while the counts for <102 J and >104 J were relatively 
minor. The energy distribution of the microseismic data generally follows a normal distribution, 
as shown in fig. 2. 

Figure 2. (a) Microseismic energy level distribution at the 8023 working faces of  
the Xinjulong coal mine, (b) time-frequency variation curve, and  
(c) time-total energy variation curve

Methods

With the extraction of the working face, monitoring equipment records the micro-
seismic events caused by structural damage to the coal and rock masses near the mining area, 
forming a continuous time series database. Relevant studies indicated that microseismic events’ 
frequency and energy variations over time exhibit certain regularities [8], supporting the cor-
relation between historical and future microseismic events within specific time intervals. Simi-
lar patterns have also been observed in monitoring data from multiple coal mine sites, providing 
a theoretical and empirical foundation for predicting microseismic events.

Based on the aforementioned analyses, a functional relationship between historical 
and current microseismic data along the time axis can be obtained:

( )1, 2, ,Ci f Ci Ci Ci t= − − − ∆ (1)
where Ci is the attributes of current microseismic data and Δt is the period used for historical 
data analysis.

Accordingly, a dataset that consists of a fixed window size, M, sliding forward by N 
lengths of L can be constructed [9], where M is the fixed window length, N is the number of 
samples in the dataset (N = Δt – M), and L is the sliding step length of the fixed window (all 
time units are in days). Generally, L is set to 1 to increase the number of samples in the dataset. 
The fixed window size serves as a hyperparameter for the dataset model. This study constructs 
two datasets with M = 4 and M = 7, comparing their performances in subsequent deep-learning 
models. Figure 3 illustrates the dataset construction using M = 7.

The N-BESTS method is proposed in 2020 [10]. This model is a deep neural network 
that employs dual residual connections and a deep, fully connected stack, achieving season-
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al-trend predictions and their interpretability 
in time series prediction tasks through a purely 
deep learning approach. Figure 4 presents the 
overall structure of the model.

The time series dataset is input into the 
box to output the amplification coefficients for 
retrospective history phases and future predic-
tion phases through a 4-layer fully connected 
(FC) network:

( ) ( ) ( ) ( )
( ) ( )

,1 ,1 ,2 ,2 ,1 ,3 ,3 ,2 ,4 ,4 ,3

,4 ,4
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= = = =
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Each layer inside the box functions as 
RELU + FC. For instance, in the first layer of 
the FC box, jl,1 = RELU(Wl,1 + bl,1), where W is 
the weight, and b is the bias. The subsequent 
FC layers perform simple linear mappings  
θ fl = W fl hl,4. The data are inserted into the mod-
ule composed of the box, undergo processing 
by a structure similar to the residual network, 
and then move to the Store module to execute 
the fully connected neural network architecture, 

ultimately outputting the predicted values of the time series. This experiment sets the predicted 
time series length to 1 day. 

The mean absolute percentage error (MAPE) [11] is chosen as the model evaluation 
metric, which can disregard the impact of the model scale. The selected periods for this ex-
periment all fall within the coal mining production period, and the microseismic data does not 
exhibit zero cases in the time series. The calculation formula of MAPE is:

1

ˆ100 N i t i t

i i t

C C
MAPE

N C
+∆ +∆

= +∆

−
= ∑ (3)

where N is the total number of samples, Ci+Δt – the actual value, and Ĉi+∆t – the predicted value.

Results and discussion

The model data is divided into training and testing sets at a ratio of 8:2 [12]. Figure 5 
shows the results of the time-frequency and time-total energy predictions for the Xinjulong coal 
mine 8302 working face dataset. It can be seen that the prediction performance for time-fre-
quency is superior to that for time-total energy, and the hyperparameter fixed window length  
M = 7 outperforms M = 4. The coal mine’s on-site situation indicates that a thick and hard roof 
can be above the 8302 working face, with a hanging roof present during the working face ex-
traction process. As the working face advances, the rock strata above the mining area gradually 
fracture, experiencing a relatively long period of continuous fracturing. The deep learning mod-
el more effectively learns the periodic patterns of frequency, while the analysis of total energy 
is impacted by on-site pressure relief measures, such as blasting and large-diameter drilling, 
which disrupt periodic energy release patterns from roof fractures. In addition, the total energy 
exhibits significant fluctuations in absolute value, resulting in suboptimal prediction perfor-
mance in this case.

Figure 3. Example of constructing  
time series dataset

Figure 4.  Architecture of N-BESTS deep 
neural network
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Figure 5. Prediction results of time-frequency and time-total energy by  
N-BESTS deep neural network under conditions of M = 7 and M = 4

Conclusions

This study constructs a microseismic time series dataset for coal mines based on a 
fixed window with sliding steps and applies the purely deep learning model N-BESTS for 
predictions. Its unique dual residual neural network structure effectively predicts the evolution 
trends of microseismic events, with slight discrepancies between prediction results and actual 
monitoring values. Under the setting of M = 7, the model’s test set results are MAPE = 0.12 for 
time-frequency and MAPE = 0.23 for time-total energy, demonstrating good predictive perfor-
mance. 

The current sample size of the dataset is still relatively small for deep learning models, 
potentially leading to incomplete feature extraction. Future research could apply data augmen-
tation techniques such as spatiotemporal data interpolation [13], generative adversarial net-
works [14], and diffusion models [15], to expand datasets and enhance microseismic monitor-
ing applications in coal mines.
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Nomenclature
Ci 	 – attributes of current microseismic data, [–]
Ci+Δt 	– actual value, [–]
N 	 – total number of samples, [–]
Δt 	 – period used for historical data analysis, [s]

Acronyms

FC 		  – fully connected layer.
MAPE 	 – mean absolute percentage error
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