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The retrofit of existing buildings has a notable potential to save energy and re-
duce the environmental impact. This paper presents an approach to assess the
primary energy saving potential related to the retrofit of a school building. The
retrofit includes wall and roof insulation, fenestration replacement, installation of
heat pumps with thermal storage, and usage of photovoltaic panels. The approach
relies on building simulations and operation optimization to evaluate a limited
number of retrofit combinations. The results are used to formulate two kinds of
surrogate models based on gradient boosting: (1) classifier that finds feasible op-
tions and (2) regressor that estimates the primary energy consumption. The results
show high precision of the predictive models. The F1 score of the classifiers ex-
ceeds 0.99 even for very small training samples. The most important feature for
estimating feasibility is the heat pump capacity. The coefficient of determination
of the regressors is close to 1 and the root mean square error is lower than 1
kWh/m2, even for moderate sizes of the training set. The most important feature
for predicting energy consumption is related to the area and orientation of photo-
voltaic panels.
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1. Introduction

Buildings are responsible for a significant share of global energy consumption and environmental footprint.
The retrofit of existing buildings has a notable potential for the reduction of the impact on the environment
[1]. It includes the improvement of a building envelope, upgrading heating and cooling systems, installing
heat pump (HP) systems, using solar energy with photovoltaic panels (PV), etc. During the next 15 years,
Serbia should considerably improve the energy efficiency of buildings and increase the share of HPs [2].

Życzyńska et al. [3] assessed the impact of the retrofits of 14 public buildings in Poland and reported
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37.1% lower energy consumption, due to the improvements to the heating system and insulation. A simi-
lar analysis related to schools and kindergartens showed the reduction in heat consumption of 46.8% [4].
Rand̄elović et al. [5] analyzed various combinations of passive measures for Serbian schools using building
energy simulations and estimated that the requirements can be reduced by up to 77% for heating and 79% for
cooling. Papadakis and Katsaprakakis [6] compared active and passive retrofit measures for public buildings
and found insulation to be of crucial importance, due to the dominance of heating requirements in energy
consumption. Sánchez et al. [7] considered negative effects of passive measures on the cooling demand in
the Mediterranean climate. Ciacci et al. [8] optimized retrofit measures for two Italian schools from the cost
perspective and concluded that the energy-saving potential (ESP) is 35% and that it is more convenient to
improve the system than the building envelope. The impact of climate change on the school retrofit is taken
into account in Refs. [9, 10], while sustainability indicators are considered in Ref. [11].

For many years, the bottom-up assessment and optimization of building retrofit measures was carried out
using building simulations, based on white-box models. However, these simulations are often computation-
ally intensive and time-consuming. Recently, following the advances in machine learning (ML), simulation
models have started being replaced or supplemented with their data-driven black-box surrogates.

Surrogate models or metamodels approximate the behavior of original, usually more complex and com-
putationally intensive calculation procedures. These models rely on ML techniques and data obtained from
measurements or simulations. Integrating them into optimization procedures can improve building design by
reducing the computational time and increasing the exploration space [12, 13]. For example, combining a
model based on an artificial neural network (ANN) — to predict the values of objective functions — with a
genetic algorithm (GA) can improve the efficiency of optimizing retrofit options of buildings [14–16]. The
power of the surrogate models derived from EnergyPlus [17] simulation results was demonstrated in [18–20],
for example. In addition, such models can be applied to calibrate building simulations [21]. However, they
still suffer from reusability and interpretability issues [22]. Thrampoulidis et al. [1] presented an approach
that improves the scalability of surrogates to larger sets of buildings.

Although feed-forward ANNs are the most widely used for surrogate modeling, other ML approaches
such as support vector regression (SVR) and tree-based methods are also very effective [22]. For example,
Ref. [23] uses a random forest (RF) to classify retrofit options according to their cost-effectiveness, while
Ref. [24] applies regressors based on RF, gradient boosting (GB), and extremely randomized trees to pre-
dict primary energy (PE) consumption (PEC). Shen and Pan [25] used light GB machines combined with
Bayesian optimization of hyperparameters to formulate surrogate models. The models were then applied in a
multi-objective optimization (MOO) procedure for the design of green buildings. In addition, they measured
the contribution of individual parameters with Shapley additive explanations. Zhu et al. [26] presented an-
other MOO approach to the design of green buildings using RF models as surrogates and the non-dominated
sorting GA (NSGA) III. Shi and Chen [27] applied several ML regression methods to predict the energy
consumption, life-cycle cost, and thermal comfort time for different retrofit options related to the building
envelope of a hospital. The results were applied for retrofit MOO with NSGA III. Alaa et al. [28] optimized
roof parameters with GA based on RF regression models, which were trained using the data obtained with
building simulations.

Nguyen et al. [29] applied a stacking regression approach to predict energy consumption in retrofitted
buildings and reported a significant improvement in predictive performance. They used linear regression
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(LR) as a meta-learner. Baseline models were formulated with various boosting ensemble methods and deep
ANN. The approach was applied to multiple buildings at once. Li et al. [30] considered PV and used a
voting binary classification approach to select retrofit options. The voting ensemble performed better than
the individual models. Imalka et al. [31] presented a life-cycle MOO of PV design with ANN and NSGA II.

Sretenović et al. used measured data and SVR to predict daily building heat consumption in [32], while in
[33] they combined LR with ANN. Jurišević et al. [34] compared LR, decision tree, and ANN for predicting
monthly heat consumption in kindergartens and concluded that the last performed the best. Milićević and
Marinović [35] used ANN to predict PV energy output.

HPs are very important for progressing towards sustainable heating systems [36]. They enable an increase
in the usage of renewable energy [37] for heating, cooling, and hot water preparation. The potential impact
and feasibility of a wider adoption of HPs in Serbia were studied in Refs. [38, 39]. The exergy aspect of air-
source and ground-source HPs was analyzed in Refs. [40, 41], respectively. Kossi and Rama [42] concluded
that HS can significantly improve the flexibility and profitability of HP systems. Li et al. [43] emphasized
the value of HS in a system with HP and PV.

Design and operation optimization of energy systems is important to thoughtfully estimate and fully ex-
ploit their cost and ESP. Optimization of the systems with HPs — which might include HS and PV — is often
carried out with mixed integer linear programming (MILP) [44–46], metaheuristic methods such as NSGA
II [43], or reinforcement learning in more complex cases [47–49]. Chaoran et al. [50] presented a MOO
approach to a ground-source HP operation with a surrogate model based on extreme GB that substitutes
numerical simulations of HP.

It seems that there is a gap in the literature related to the consideration of optimal operating regimes of
energy supply systems in the context of formulating surrogate models to achieve a sustainable building de-
sign. In addition, the presented methods mostly use regression to predict energy consumption, costs, thermal
comfort, etc. The feasibility of retrofit options, i.e. predicting whether an energy system will be able to cover
the demand, is rarely — if at all — explored with metamodels. This paper aims to fill the gap by providing
an approach for defining surrogate models that enable a joint consideration of energy system design and
operation together with building envelope improvement. By combining classification and regression tasks, it
enables both the identification of feasible solutions and the estimation of optimal ESP, therefore yielding a
more comprehensive retrofit assessment and better insights into the improvement opportunity.

The presented approach for the assessment of ESP for school buildings through retrofit. It considers two
kinds of interventions: (1) the improvement of the building envelope and (2) the installation of a new energy
supply system with HPs. For a limited number of retrofit measure combinations, PE saving potential is
estimated with building simulations and operation optimization. The results are used to formulate two kinds
of GB surrogate models: (1) classifiers that try to find feasible combinations of retrofit measures and (2)
regressors that predict PEC for feasible solutions. The approach can be integrated into a retrofit optimization
procedure that uses a metaheuristic method such as GA or NSGA II/III.

The paper also illustrates the application of the presented approach to the case of a school building,
using the Serbian PE conversion factors and the typical meteorological year for the city of Niš, Serbia.
Having an efficient and accurate methodology for ESP assessment is particularly important for schools due
to their regular occupancy, energy efficiency and PV convenience, social importance, and public funding
opportunities.
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2. Methodology

The methodology for assessing the low-energy potential of school building retrofit measures presented in this
paper considers the envelope improvements, in particular the insulation of the exterior walls and roof, as well
as the replacement of fenestration. In addition, it assumes the application of HPs for heating and cooling,
with optional HS and cool storage (CS), and examines the optimal operation of such energy systems. Finally,
installing PV panels is explored as well.

Since both envelope and supply-side improvements are considered, two problems are addressed:

1. Checking feasibility of retrofit options, i.e. if HPs with HS and CS can satisfy the building demand.
2. Calculating the specific PEC for feasible options.

The predictor variables that characterize each retrofit option, i.e. each combination of measures, are:

• x1 — the thickness of external wall insulation, in [cm],
• x2 — the thickness of roof insulation, in [cm],
• x3 — the overall heat transfer coefficient of glazing, in [Wm−2 K−1],
• x4 — the total solar energy transmittance of glazing,
• x5 — the option related to the installation of PV panels or their area, in [m2],
• x6 — the number or capacity of HPs, in [kW],
• x7 — the size of HS,
• x8 — the size of CS.

This paper applies building simulations and the values of variables x1–x5 to calculate the electricity,
heating, and cooling demand, as well as the PV output for various retrofit options. They act as the inputs of
the optimization problem, which yields the PEC for given design values x6–x8, if the problem is feasible.

The optimization results are used to formulate separate surrogate models for the feasibility check and
PEC estimation. Both kinds of models are based on GB, which is one of the most effective non-linear
supervised ML methods and can be trained in a relatively short amount of time. GB is convenient for handling
nonlinearities, avoiding overfitting, and providing good performance with small and large datasets, as well
as across a number of hyperparameter combinations. Various kinds of GB machines exhibited excellent
prediction performance in building-related applications [51, 52]. Compared to ANNs, they often offer a
better balance of accuracy and efficiency [53], have lower sensitivity to the choice of hyperparameters, and
tend to require smaller amounts of data.

2.1. Operation optimization

This methodology aims to assess the energy saving potential of retrofit options and assumes that the energy
supply system will operate in the regime that yields the minimal annual PEC. Operation parameters are
determined with MILP. Optimization is performed for the entire typical year at once, although the approaches
with a moving horizon [54] and typical days [55] may be applied as well.

The continuous non-negative decision variables of the MILP model, for each time step τ , are:

• Ẇ τ
e,grid,in and Ẇ τ

e,grid,out — the electricity import from and export to the grid, respectively, in [kW],
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• Q̇τ
h,HP and Q̇τ

c,HP — the heating and cooling output for each HP, respectively, in [kW],
• Q̇τ

h,HS,in and Q̇τ
c,CS,in — the heat added to HS and CS, respectively, in [kW],

• Q̇τ
h,HS,out and Q̇τ

c,CS,out — the heat retrieved from HS and CS, respectively, in [kW],
• tτHS and tτCS — the average temperatures of the storage mediums in HS and CS, respectively, in ◦C.

There is one binary variable δτHP for each HP and each time step τ that decides whether an HP is operating
in the heating (δτHP = 1) or cooling mode (δτHP = 0).

Equation (1) defines the objective function — minimization of annual PEC, EP, in [kWh]:

min EP = φe
∑
τ

(
Ẇ τ

e,grid,in − Ẇ τ
e,grid,out

)
∆τ (1)

where φe = 2.5 is the PE conversion factor for electricity [56], ∆τ is the time step, and τ is the time index.
The amount of exported electricity is limited with the PV production during each time step with eq. (2),

while the outputs of all HPs are constrained by their capacities and operating modes with eqs. (3) and (4):

Ẇ τ
e,grid,out ≤ Ẇ τ

e,PV ∀τ (2)

Q̇τ
h,HP ≤ δτHPQ̇

τ
h,HP,cap ∀τ ∀HP (3)

Q̇τ
c,HP ≤ (1− δτHP) Q̇

τ
c,HP,cap ∀τ ∀HP (4)

where Ẇ τ
e,PV is the electricity generated by the PV system for each time step τ , in [kW], while Q̇τ

h,HP,cap and
Q̇τ

c,HP,cap are the heating and cooling capacities for all HPs, for each time step τ , also in [kW]. PV electricity is
obtained with building simulations, while HP capacities are obtained from manufacturers and vary according
to the temperatures of the exterior air and heating or cooling water.

Equations (5)–(7) ensure the satisfaction of the electrical, heating and cooling demand, respectively:

Ẇ τ
e,grid,in − Ẇ τ

e,grid,out −
∑
HP

(
Q̇τ

h,HP

COPτ
HP

+
Q̇τ

c,HP

EERτ
HP

)
+ Ẇ τ

e,PV = Ẇ τ
e,demand ∀τ (5)∑

HP

Q̇τ
h,HP + Q̇τ

h,HS,out − Q̇τ
h,HS,in = Q̇τ

h,demand ∀τ (6)∑
HP

Q̇τ
c,HP + Q̇τ

c,CS,in − Q̇τ
c,CS,out = Q̇τ

c,demand ∀τ (7)

where Ẇ τ
e,demand, Q̇τ

h,demand, and Q̇τ
c,demand are the electricity, heating, and cooling demand, for each time step

τ , respectively, in [kW], while COPτ
HP and EERτ

HP are the coefficient of performance (COP) and energy ef-
ficiency ratio (EER) for all HPs, for each time step τ . The demands are calculated with building simulations,
while COP and EER are obtained from manufacturers and also vary with the air and water temperatures.

For HS and CS, the temperatures of the storage mediums are constrained with predefined lower and
upper bounds, tτlb and tτub, in eq. (8), while eq. (9) represents the energy balance during the time step τ [57]:

tτlb ≤ tτ ≤ tτub ∀τ (8)

tτ = tτ−1 exp

(
−UA

mc
∆τ

)
+

(
tτ0 +

ητinQ̇
τ
in − ητoutQ̇

τ
out

UA

)(
1− exp

(
−UA

mc
∆τ

))
∀τ (9)
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where t0 is the ambient temperature, in [◦C], U is the overall heat transfer coefficient of the storage envelope,
in [kWm−2K−1], A is the storage envelope area, in [m2], m is the storage medium mass, in [kg], c is
the medium specific heat capacity, in [kWhkg−1K−1], while ηin and ηout account for the charging and
discharging losses.

2.2. Feasibility prediction

A retrofit option is considered feasible when an energy supply system can satisfy a building’s demand for
electricity, heating, and cooling. The feasibility criterion can depend on the design approach. One way is to
use the demand values obtained with a building simulation as inputs and execute the optimization of energy
system operating parameters. If the optimization problem is feasible, so is the retrofit option, and vice versa.
However, it is enough to use only the demand for the design days and obtain just the first feasible solution
from the optimization procedure, which verifies the feasibility [54, 55].

After determining the feasibility for a limited number of retrofit options using simulations and optimiza-
tion, it is possible to formulate a surrogate model that predicts whether an option is feasible. This is a binary
classification problem. The predictors are x1–x8. The target is 1 if the option is feasible and 0 otherwise.

When training the model, it is possible to have an imbalanced data set, i.e. that the counts of feasible and
infeasible solutions differ significantly. The imbalance is handled by assigning higher weights to the obser-
vations of the minority class and lower weights to the majority class. The weights are inversely proportional
to the square root of the class frequencies.

The performance of the classification is evaluated using the metrics suitable for imbalanced data sets, i.e.
the precision, p, recall, r, and their harmonic mean, F1 score, as defined in eq. (10):

p =
ntp

ntp + nfp
, r =

ntp

ntp + nfn
, F1 =

2pr

p+ r
(10)

where ntp, nfp, and nfn are the numbers of true positive, false positive, and false negative predictions.

2.3. Primary energy prediction

Predicting PEC is a regression problem. The predictors are again x1–x8. The predicted variable is the specific
PEC, in [kWhm−2], obtained by dividing EP with the building floor area.

The applied evaluation metrics are: the dimensionless coefficient of determination, R2, as defined in
eq. (11), as well as the root mean square error (RMSE), mean absolute error (MAE), and median absolute
error (MedAE), expressed in [kWhm−2], as given in eq. (12):

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(11)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, MAE =
1

n

n∑
i=1

|yi − ŷi| , MedAE =
n

median
i=1

(|yi − ŷi|) (12)

where n is the number of observations, yi is the true value of the observation i, i = 1, . . . , n, ŷi is the
predicted value of the observation i, and ȳ is the arithmetic mean of all values yi, i.e. ȳ = 1

n

∑n
i=1 yi.
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2.4. Model formulation

Formulating a surrogate model for both the classification and the regression problem starts with a random
selection of a limited number of retrofit options, i.e. combinations of retrofit measures. Each retrofit option
is one observation. Then, the following procedure, which is illustrated in fig. 1, is applied:

1. Determine the values of the predicted variables for each selected observation using building simula-
tions and system optimization. If only feasibility is predicted, design-day simulations and first-solution
optimization are sufficient.

2. Split all observations into the training and test subsets.
3. Train and validate regression GB models for PEC prediction with the k-fold cross-validation (CV)

using the training set, considering only feasible retrofit options.
4. If the regressor predictive performance obtained with CV is satisfactory, formulate and train the final

model. Use the test set to evaluate it. Proceed to the assessment of the feasibility models. Otherwise,
randomly select additional retrofit options and repeat the procedure.

5. Train and validate classification (feasibility) GB models with the CV, using observations.
6. If the classifier performance is satisfactory, train and test the final model. Otherwise, randomly select

additional retrofit options and repeat the procedure only for feasibility.

The methodology is implemented in the Python programming language by the first author of the paper,
using the Gurobi Optimizer [58] and Scikit-learn library [59].

3. Results and discussion

The presented approach is applied to the case of a two-story primary school building located in the urban
part of the city of Niš, Serbia. The building is 63 years old and has the floor area of 4613 m2. The area of the
pitched roof is 3381 m2. The exterior uninsulated masonry brick walls occupy 3793 m2 and the fenestration
1267 m2. The school is connected to the district heating system, while split systems are used for cooling. The
annual specific heat consumption is around 150 kWh/m2. The school operates in two shifts, from 07:00 to
20:00 hours, from Monday to Friday, with around 1000 persons per day. The peak occupancy is from 08:00
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Figure 1. Workflow diagram for model formulation
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to 11:30. A classroom is typically occupied by 20− 25 students and one teacher. The school year lasts from
the beginning of September to mid June, with the three-week break in January. It also operates during the
last two weeks of June and the last two weeks of August with reduced capacity.

The analyzed retrofit measures are:

• 11 options for the thickness of external wall insulation made of mineral wool, ranging from 0 to 30 cm,
• 11 options for the thickness of roof insulation made of mineral wool, ranging from 0 to 30 cm,
• 14 options for new fenestration with 10 distinct values of the overall heat transfer coefficient and five

values of the total solar energy transmittance,
• five options for PV panels, ranging from 0 to 1300 m2, where option 0 refers to the case without PV,

option 1 includes PV on the south side, option 2 puts PV on the south and east side, option 3 includes
the south, east, and west side, while option 4 uses the total available space,

• five options for HPs with the heating capacities ranging from 336 to 672 kW at the external air tem-
perature of −15◦C,

• six options of water HS, ranging from 0 (no storage) to 48 m3,
• six options of water CS, ranging from 0 (no storage) to 48 m3.

Multiplying the option counts for all variables yields 1524600 retrofit combinations in total.
The electrical, heating, and cooling demand, as well as the electrical output of PV panels are obtained

using building simulation in the EnergyPlus software (version 23) and the typical meteorological year. The
simulation results have hourly resolution. The absolute difference between the measured annual heat con-
sumption and the results of simulations formulated according to the current state is less than 10%. The
operation optimization is conducted with the Gurobi Optimizer (version 11). The size of the training sample
is chosen from the learning curves to satisfy the conditions F1 ≥ 0.995 and RMSE ≤ 1. The test sample has
the equal size as the training sample.

The classification of the retrofit combinations, i.e. observations according to feasibility is performed with
the GB classifier from the Scikit-learn library (version 1.6). Around 90% of the observations have the target
value of 1, which means that the data is highly imbalanced.

Figure 2 illustrates the improvement of the classification model performance with the number of sampled
observations. The light areas represent the mean value ±1 standard deviation. For very small sample sizes,
the models tend to overfit. However, even for the case of 1000 observations, i.e. less than 0.07% of the total
number of combinations, the results are already satisfactory. The means of the precision, recall, and F1 score
for the validation data exceed 0.99. The values of all evaluation metrics approach 1 as the sample grows.

An example classification model trained with 10000 observations and tested with another 10000 obser-
vations yields the following result for the test set:

• 977 correctly classified infeasible combinations,
• 9009 correctly classified feasible combinations,
• 11 incorrectly classified infeasible combinations,
• 3 incorrectly classified feasible combinations.

The infeasible solutions wrongly classified as feasible could be identified and dropped in a later stage
of the investigation, when the promising options are examined in greater depth. However, the incorrectly
classified feasible solutions would probably be removed from any further analysis and lost.
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Figure 2. Learning curve for the classification task — finding feasible options
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Figure 3. Learning curve for the regression task — estimating specific PEC

GB — as well as other decision-tree-based methods — can provide the information on the feature impor-
tance. It indicates how useful a feature is for defining a particular model. The above-mentioned classification
model indicates that the most important variable for predicting feasibility is HP capacity (38%), followed by
the thickness of wall and roof insulation.

The area under the receiver operating characteristic curve is very close to 1, so this curve is omitted.
The prediction of the specific PEC for feasible retrofit combinations is conducted with the GB regressor

from the Scikit-learn library.
Figure 3 shows the decrease in RMSE, MAE, and MedAE with the increase in the sample size. Again,

there seems to be some overfit for very small sizes. With 10000 observations, the means of all errors are
below 1 kWh/m2 and further approach zero with the growing sample. The values of the coefficient of
determination are close to 1, so they are not visualized.

Figure 4 analyzes the performance of an example regression model trained with 10000 observations
and tested with another 10000 observations. The leftmost plot almost corresponds to the straight line of the
45◦ slope, indicating that the predicted and actual values are very close. The scatter diagram in the middle
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Figure 4. Predicted PEC, actual PEC, and errors for the model trained with 10000 data points

illustrates that most of the residuals have the absolute value below 2 kWh/m2, with a very few exceptions.
Actually, 99.86% of all absolute residuals are lower than 2, and 98.49% are lower than 1 kWh/m2. The
rightmost histogram shows symmetric error distribution.

The most important feature for PES prediction is the PV area and orientation, followed by the insulation
thickness of the roofs and walls.

The experiments indicate significant time saving potential due to the use of surrogate models. They are
conducted on a laptop computer with an Intel(R) Core(TM) i5-10210U processor, which has four physical
cores and supports eight threads. The operating system is Ubuntu 24.04 and the Python version is 3.12.

A single full building simulation, executed on a single core, in a multiprocessing setting, lasted on av-
erage approximately 323 s, while a design day simulation took around 28 s. It is worth mentioning that
the simulation time heavily depends on the level of details considered. The time required for running one
MILP procedure varies significantly and is around 43 s on average, when executed on a single core. How-
ever the duration depends on the problem formulation. For example, if heating and cooling seasons are
separated, the binary variables can be predefined and the problem is reduced to a much simpler linear pro-
gramming formulation, which needs only 3 s. On the contrary, more complex problems, such as the ones
described in [46], might take several hours to complete. The assessment of all possible combinations re-
quires 11 · 11 · 14 · 5 = 8470 simulations and 1524600 optimization runs, which would last approximately
10.6 days when executed on eight cores in parallel, with the simplest optimization problem. Proportionally,
20000 observations need 3.33 h.

Obtaining learning curves for 10000 observations, for both classification and regression problems, lasts
around 151 s with GB machines. Training and testing the final models with 20000 observations in total, to-
gether with predicting all remaining combinations might last up to 20 s. Some GB variants such as extreme
GB and histogram GB might be significantly faster. Therefore, formulating surrogate models and full pre-
dictions occurs in under 3 min, which is less than the time needed for a single building simulation. The full
process, including simulations and optimization, takes less than 3.5 h.

Having the validated surrogate models, it is possible to quickly make predictions for all combinations of
retrofit measures and conduct analyses or run a metaheuristic optimization algorithm that uses the predictions
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Figure 5. Impact of PV choice on the specific PEC

to evaluate objective functions.
The analysis of the considered improvements indicates that the most significant measure in terms of PEC

is the installation of PV. It can reduce the specific PEC at best to 27 kWh/m2. The combination of PV and
other active measures, i.e. HPs and storage, can achieve 25 kWh/m2. The second most effective measure is
the insulation of exterior walls, which can yield the specific PEC of 87 kWh/m2 when HPs without storage
are used for heating and cooling. All considered passive measures, i.e. insulation and new fenestration, can
decrease PEC to 57 kWh/m2. Neither active nor passive measures can achieve zero PEC solely, but when
combined, they can yield the specific PEC below −50 kWh/m2.

Figure 5 shows the impact of the chosen PV option on the values of the specific PEC. Without PV, the
specific PEC is always above 55 kWh/m2. For option 1, minimal PEC drops to approximately 20 kWh/m2.
Option 2 is included in some combinations that generate more energy than it is consumed. Actually around
42% of all combinations with this option have a negative value of the specific PEC. Options 3 and 4 are
related dominantly to the retrofit combinations with negative PEC values.

The middle PV option 2 is further explored from the wall insulation point of view, as shown in fig. 6.
First, it can be noted that the specific PEC drops quickly with the rise of the insulation thickness for lower
thickness values and much more slowly later, which is expected and is a well known consequence of the
mathematical expression for the overall heat transfer coefficient for a multi-layer wall. The other important
observation is that PEC can have a negative value for the thickness above 6 cm. However, for all thickness
values, there is still a considerable number of retrofit options with positive PEC.

From the practical point of view, the surrogate models presented in this paper might be applied as a part
of an analysis or optimization procedure. They can provide a tool that assesses retrofit measure combinations
rapidly yet accurately, but also enables the tightening of the search space and allows researchers to focus on
deeper exploration of promising solutions. For example, in an economic analysis or cost optimization that
focuses only on the solutions with negative PEC (e.g. exploring zero-energy potential), one could eliminate
PV options 0 and 1 because they never satisfy this requirement. The case without wall insulation can be
discarded for the same reason. One could also notice that the values of wall insulation thickness above
20 cm have a very low additional contribution to PE savings, so they might be neglected as well. These
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Figure 6. Impact of wall insulation thickness on the specific PEC for the PV option 2

considerations can reduce the number of explored solutions by 67.3%.
Black-box models with low computational requirements and high predictive performance of energy con-

sumption are especially important for energy planning at the neighborhood, district, or city level. They can
be used to aggregate energy consumption data for multiple buildings and help decision makers to estimate
potential savings, plan the development of infrastructure or decarbonization measures, ensure the compli-
ance of building performance with the existing or future codes, identify the buildings and measures of the
highest priority for retrofit, etc. In addition, such models can facilitate simulating multiple retrofit scenarios
or joint cost optimization of multiple buildings of the same kind. This is particularly convenient in the case
of schools, which have regular occupancy patterns, large potential for energy savings, PV installation, and
net-zero-energy performance, as well as high priority in public funding. Since geographical information sys-
tems (GIS) can be combined with building simulation and optimization to optimize retrofitting [60], there is
a potential to couple GIS and ML building surrogate models in such applications.

Although surrogate models can be formulated for various energy systems, building types, and climates,
applying a model to conditions not considered during training is generally not an acceptable approach. In
order to extend the application to different cases, one should either: (1) rerun simulations and optimization,
with the new weather and other inputs, and then retrain a model with appropriate data, (2) use multiple
buildings to formulate a model with a different structure, which includes a wider range of input features,
such as climate parameters or building type, or (3) formulate multiple models, one for each considered case.

4. Conclusion

This paper presents and applies an approach for the assessment of energy-saving potential for school build-
ings through retrofit based on building simulations, operation optimization, and machine learning surrogate
models. It examines the improvement of the building envelope and the installation of a new energy system
based on heat pumps, with optional thermal storage and photovoltaic panels.

The simulation results act as the inputs of the operation optimization process that calculates minimal
primary energy consumption. Primary energy is determined for a limited number of retrofit measure com-

12



binations, each of which represents one observation. The predictive models based on gradient boosting are
formulated using these observations. These models can separate feasible retrofit combinations from infeasi-
ble ones and assess the primary energy consumption.

For the examined case of a school building located in the city of Niš, Serbia, both models were validated
and exhibited a very good performance, indicating their applicability, even with a relatively small number
of training observations e.g. 1000 or 10000. The classification models that predict the feasibility of retrofit
options have the average precision, recall, and F1 score greater than 0.99 for the training sets with 1000

or more observations. The regression models that predict the specific primary energy consumption have the
coefficient of determination close to 1 and the average root mean square error below 1 kWh/m2 for the
sample size of 10000 or greater.

Such surrogate models are important because they can assess many retrofit measure combinations ac-
curately, in a short time and with relatively modest computing resources. This allows the tightening of the
search space and focusing on exploration of the promising areas, which can be particularly important for
energy planning.

In the future, this approach could be applied to multi-objective optimization of retrofit options, possibly
in combination with a metaheuristic method.

Further work should also explore the applicability of other machine learning methods, as well as the
potential to improve prediction performance in the cases of small training sets, either by optimizing hyper-
parameters or involving hybrid approaches such as voting or stacking. In addition, using explainable artificial
intelligence methods — e.g. local interpretable model-agnostic explanations or Shapley additive explanations
— might provide additional insights into the obtained results.
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[33] Sretenović, A. A. et al., Hybrid artificial intelligence model for prediction of heating energy use, Ther-
mal Science 26 (2022), No. 1B, pp. 705–716,
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