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In this work, we consider the large deviation principles of the stochastic reaction 
diffusion mussel-algae model. The weak convergence method is used to prove the 
large deviation principle by using martingale inequality, shrinkage principle and 
some special energy estimation. 
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Introduction

Since the 1990's, the pioneering work of British biologist Turing has brought signi 
cant attention biological interaction systems among researchers [1, 2]. Cangelosi [3] investigat-
ed the mussel-algae model using weakly non-linear diffusion instability analysis. This model is 
described by the partial differential equations:
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where M and A are the population densities of mussels and algae, respectively, and all constants 
in the model are non-negative.

However, due to uncertainties and unknown factors, real ecological systems are of-
ten subjected to various noise perturbations from the environment. Liu et al. [4, 5], employed 
stochastic control and weak convergence methods to demonstrate the Laplace principle, which 
is equivalent to the large deviation principle. Additionally, Liu [4, 5] established the large de-
viation principle for stochastic evolution equations with multiplicative noise. Budhiraja [6], as 
referenced in, utilized the weak convergence approach to derive the large deviation properties 
of weakly interacting particle systems. Therefore, through the transformation of parameters, the 
stochastic reaction dispersal mussel-algae model was considered:
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where Wt is the white noise of independent space-time, diffusion coefficient r1 and r2 – the nor-
mal numbers, and σ1 and σ2 – the disturbance intensity of white noise.

Main results

In the model (2), take r1 = σ2 = β = 0, r2 =1, σ1 = ε1/2, and the following will prove the 
results of the large deviations principle in the time interval [0, 1] of the stochastic reaction diffu-
sion planar space system. The mussel-algae model (2) is further rephrased for random reaction 
diffusion:
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Therefore, it is easy to calculate the boundary homeostasis of model (3) as: (0,1) and 
the normal homeostasis of the coexistence of two populations:
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consider the following stochastic partial differential equations in order to study the large devi-
ations of the stochastic reaction diffusion mussel-algae model (3):
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Theorem 1. Let ϕn, ψ ∈ AN
d, and (mϕn, aϕn) be the solution of model (4), then:
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Proof. First, for al s, t ∈ [0, 1] and ϕ ∈ AN
d , by model (4), there is Pi (i = 1, 2), such that:
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Obviously, {mϕn (t)}n ≥ 1 is equivalently continuous, so according to the Arzela-Ascoli 
theorem, for some subsequences of {m(t)}C([0, 1]:R) and {mϕn (t)}n ≥ 1:
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Secondly, there are P3 that make it:
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Obviously, the available {aϕn (t)}n ≥ 1 is the Cauchy sequence on C([0, 1]; C), so for 
some {a(t)}C([0, 1]:R), there is lim||n → ∞ aϕn (t) – a (t)C([0, 1]; C) = 0. Thus, by the formulas ϕn → ψ and 
eq. (5), when n → ∞ has:
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According to the existential uniqueness of the solution, it can be seen that  
(m, a) = (mϕn, aϕn), and therefore, there is:
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Theorem 2. For solution (mε,ψε, aε,ψε) and family {ψε} ⊂ AN
d of model (4), the distribu-

tion under topology H is:
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That is, there are all bounded continuous functions f : C([0, 1]; R×C) such that:
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Proof. According to the embedding Skorohod theorem, for the probability space  
(Ω, F, P) it is easy to obtain that the random variables {m̃εn} and m̂ have the same distribution 
as {mεn} and m, respectively:
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according to the differential equations of reaction diffusion:
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initial: a~εn(0) = a~0, a~(0) = a~0 , with Theorem 1, it is easy to know:
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Therefore, (m~ 
εn, a

~
εn) and (mεn, aεn) have the same distribution. According to Martingale 

inequality, there is:
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We can be seen from eqs. (6) and (7), (m~ , a~) also satisfies the model (4), and according 
to the uniqueness of the solution, (m~ , a~) and (mη, aη) have the same distribution, so that there is 
m ∈ C([0, 1]; R) and a subsequence {mεn} satisfied: limn → ∞εn = 0.

Under the distribution of topological structure C, there is: limn → ∞mεn
 = m. Then prove 

compactness. for any κ > 0, there is:
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Suppose that κ2, λ2 = (P5/κ2), using Chebyshev inequality, for some λ2 > 0, have there-
fore:
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Using the Holder inequality, there is:
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Using the properties of martingale, there is:
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Combined with the previous analysis, it can be obtained: 
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According to Chebyshev inequality, it can be obtained:
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Assumption 3. There exists a measurable mapping F0:C(0, T):H) → θ such that the 
following conditions hold:
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where the integer value on the empty set is taken as ∞.
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Theorem 4. Suppose Xϕ = Fϕ(W(.)), and {Fϕ} satisfies Assumption 3, then there is a 
family {Xϕ}ϕ>0 satisfying the Laplace principle in θ, and the rate function I(x) is defined in  
eq. (9).

Proof. In order to prove the theorem, we must first prove:
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without losing generality, we first assume that for all ϕ > 0 and a finite number, S, there are
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The aforementioned results indicate:
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Therefore, for the proof of mϕ(s), only mϕ,S(s) substitution is needed. Available from 
Assumption 3:
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Therefore, the proof of the lower bound is completed.
	– Secondly, then prove the upper bound. because the function ћ is bounded and satisfies:
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Then we can see from Assumption 3 that when ϕ → 0 is:

	 0

1( ) ( )d
T

E F W m s sφ

φ

 




 
 ⋅ +





 
 

∫

It converges to:

	

.
0

0
0

( )d ( )F m s s h x
 
 
 
 

 
  =
 
 

∫

it can be expressed as:

	
{ }inf ( ) ( ) ( )

x
I x x

θ
α α

∈
+ + ∀

Theorem 5. Suppose that (mε, aε) is the solution of the stochastic mussel-algae 
model (3), then {(mε, aε)}ε>0 satisfies the large deviation principle and the rate function at  
C([0, 1];R × C):

	
2

0

2

{ ([0, ]: ):( , ) ( , )}

1[( , )] inf
2m L T H m a m a

I m a
ψ ψ

ψ
∈ =

 
 
 



H

where (mψ, aψ) is the solution of model (3) and satisfies (m, a) ∈ C([0, 1];R × C).
Proof. According to Theorems 1, Theorems 2, and Theorems 4, we can easily complete 

the proof of Theorem 5, so Theorem 5 is completed.
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