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In this work, we consider the large deviation principles of the stochastic reaction
diffusion mussel-algae model. The weak convergence method is used to prove the
large deviation principle by using martingale inequality, shrinkage principle and
some special energy estimation.
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Introduction

Since the 1990's, the pioneering work of British biologist Turing has brought signi
cant attention biological interaction systems among researchers [1, 2]. Cangelosi [3] investigat-
ed the mussel-algae model using weakly non-linear diffusion instability analysis. This model is
described by the partial differential equations:

aﬂ:ecAM—a’M k—M+DMAM
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where M and A4 are the population densities of mussels and algae, respectively, and all constants
in the model are non-negative.

However, due to uncertainties and unknown factors, real ecological systems are of-
ten subjected to various noise perturbations from the environment. Liu et al. [4, 5], employed
stochastic control and weak convergence methods to demonstrate the Laplace principle, which
is equivalent to the large deviation principle. Additionally, Liu [4, 5] established the large de-
viation principle for stochastic evolution equations with multiplicative noise. Budhiraja [6], as
referenced in, utilized the weak convergence approach to derive the large deviation properties
of weakly interacting particle systems. Therefore, through the transformation of parameters, the
stochastic reaction dispersal mussel-algae model was considered:
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where W, is the white noise of independent space-time, diffusion coefficient 7, and », — the nor-
mal numbers, and o, and o, — the disturbance intensity of white noise.

Main results

In the model (2), take r, =0, = =0, 1, =1, ,= &', and the following will prove the
results of the large deviations principle in the time interval [0, 1] of the stochastic reaction diffu-
sion planar space system. The mussel-algaec model (2) is further rephrased for random reaction
diffusion:

a—m:m[ad—Lj+«/;mW

1+m

a—a:Aa—a(m+oz)—oz 3)
ot
om _da
Vv =0, m(x,0)=m,, a(x,0)=aqa,
Therefore, it is easy to calculate the boundary homeostasis of model (3) as: (0,1) and
the normal homeostasis of the coexistence of two populations:
- a(r—l)’ ot = 1-ar
1—ar r(l-a)

Let:
weH, €€[0,1] and {(y,):0<e<}c A*

consider the following stochastic partial differential equations in order to study the large devi-
ations of the stochastic reaction diffusion mussel-algae model (3):

om
% =m,, (ag%é' ]—i— fm W

ﬁaw A (
—_— = (1 m
ot iz

Theorem 1. Let ¢,, w € Af, and (m,;,n a, ) be the solution of model (4), then:

1+m,

4)

o, T+ a)—-a

11m “(m¢ ay,)=(my,.a, )“c( OILRXC)

Proof. First, for al s, £ € [0, 1] and ¢ € A§, by model (4), there is P; (i = 1, 2), such that:

[, (0)=my, (0] < j [m% (s){a,,,n (5)8 —%Hds + ;[m% (5)]r(s)lds <

¢ 1/2 1 1/2
< 731(t—t’)+{_“.f my (s)ds] U|ﬁ(s)|2 dsJ <SB(—1)+ Pyt 1)
t' 0

Obviously, {m,, (#)},-1 is equivalently continuous, so according to the Arzela-Ascoli
theorem, for some subsequences of {m(?)} (o, 12) and {mg ()},

hm “m¢ (&) —m(t )“(C([O 1:R) =0 ©)
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Secondly, there are P; that make it:
“% (-a, (t')HC < “% (-a, (t')” + “% (-a, (t')““mqj" )+ a” —ac<

< [l s+ [ (Jag, s, 0+ | -arts < [, s
0 0 0

Obviously, the available {a, (¢)},- is the Cauchy sequence on C([0, 1]; C), so for
some {a(?)}cqo, 11:x), there is liml|, ., a4 (1) — a (D)o, 1).c) = 0. Thus, by the formulas ¢ — y and

eq. (5), when n — oo has:
t

[mg, 9, )ds = [misyirs)as = [ [ my ()= m(s) | gs)ds + [ [ 4, () =) |m(s)ds 0
0 0 0 0

Further, there is:
t

mg, (©)=my + | [m@ (s)[a@ ()5 —%ﬂdv + ! g, (s (5)ds

0

then we can get:
t

m(t) = my + J[m(s)(a(s)5— = Zl 5 Hds + ! m(s)(s)ds

0

According to the existential uniqueness of the solution, it can be seen that
(m, a) = (my,, a4 ), and therefore, there is:

¢11£,n,/, “(m¢” ay,)=(my.a, )”(C([O,l];RxC) -
Theorem 2. For solution (m,,,, a.,,) and family {y,} c Af of model (4), the distribu-
tion under topology H is:

,}Erolo v, =y and llil’(l)(mg% Sy, ) =(my,,a,)

That is, there are all bounded continuous functions f: C([0, 1]; RxC) such that:
lim £/ (m,.,, .a,,, )= Ef (m,.q,)

Proof. According to the embedding Skorohod theorem, for the probability space
(@, F, P) it is easy to obtain that the random variables {r, } and m have the same distribution
as {m, } and m, respectively:
lim |7, | as

=0
n—»o C([0,1;R)

according to the differential equations of reaction diffusion:

%4, =Ad, —a, (m, +a)-«a @—Aa—a(mm)—a (6)
ot K ot
initial: @, (0) = do, a(0) = a, , with Theorem 1, it is easy to know:
lim |, -] =0 as
n—oo " C([0,1;R)
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Therefore, (1., a,,) and (m, , a,) have the same distribution. According to Martingale
inequality, there is:

t
lim E\/Esup ja dw,|=0
£—0" 0<t<1 0
Pushable:
t
lim E\/: sup J-agdWS =0
0" 0<t<1
Through Theorem 1, get:
t t
()= mq + | {m(s)[a(s)a“— o )Hdﬁjrh(s)ﬁ(s)ds )
0 0

We can be seen from eqgs. (6) and (7), (71, a) also satisfies the model (4), and according
to the uniqueness of the solution, (1, @) and (m,, a,) have the same distribution, so that there is
m € C([0, 1];R) and a subsequence {m, } satisfied: lim, _ .&, = (.

Under the distribution of topological structure C, there is: lim, _, /e, = m. Then prove
compactness. for any x > 0, there is:

lim lim P(4 > x) = 0; 2= sup [, (&)= m (")

o060 Je-t<&

for any ¢ € [0, 1], there is:

[1—7]t+0'1m
0<m(r); <[©,,(m, Je

where ©,, is a semigroup generated on, and ©,,1s a contraction semigroup, this can be obtained:

Py =Esup m} ()< P, (8)

0<t<1

Suppose that x,, 4, = (Ps/k,), using Chebyshev inequality, for some 4, > 0, have there-
fore:

]P[sup m2(t) SXQ} 2l-x,

0<t<1

forany {0 <# <#, <..<t, < 1},en, there is P((m(#)) < A, i =1, 2,..., n) > 1 — K, since
K, > 0 is arbitrary, it is easy to obtain that the distribution of {m(¢,), i =1, 2,..., n} is compact.
Therefore, there is:

< sup {J.tl:ms(s)(ag(s)é‘+L }dx+j.m£(s)77&,(s)ds+\/;j‘m£dWs}S
|t—t'|<& 0 1+m S 0

j m, ()7, (s)ds

< sup
lt—t'|<&

++/& sup
[t—t'<8

Ide‘

and there is
0< sup a(x,t) <maxag(x)
lt—t<é xeQ
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Using the Holder inequality, there is:
1/2

t
sup < sup J.(mg (s)ds) ||t//£||H <& sup m.(s)
==&, 0<s<1

o-r|<é

[me i (5)ds

%

According to egs. (7) and (8), there are:
t
E sup mg(s)l/)g (S)dS

-ri<s

S,P6§1/2

Using the properties of martingale, there is:
12
2

]E\/; sup

0<¢<1

<Je E sup

0<t<1

, 1/2
< ZS{J-E|mg|2dsJ S"Pp/g
0

t t
[meam, [meam,
0 0

Combined with the previous analysis, it can be obtained:

B sup [m(t)~m(t)| < max P, Py} (3646 4
lt-t'|<&

Then take:
Ay = sup |m(t)—m(")|, 25 = sup |m, (t)—m, (")
[e=t'|<& [e=t'|<&

According to Chebyshev inequality, it can be obtained:
P(4, > K)SE(TAQ)S%‘-FE/Z +e
Assumption 3. There exists a measurable mapping F°:C(0, T):H) — 0 such that the

following conditions hold:
— For each M < oo, set

Y, = FO[Im(s)dsJ:melCM
0

is a compact set of 6.
— Considering M < oo and family {m?} c H,, let m’ converge to m in distribution (as a KC,~val-
ued random element), then:

F* [W(.) +%!m(s)ds] converges to F° [.([m(s)dsJ

in distribution. For each m € 0, first define:

T
I(m)= inf {%j"m(s)"ids} ©
{meLz([O,T]:HO):m=FO[O I m(s)ds} 0

where the integer value on the empty set is taken as oo.
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Theorem 4. Suppose X?= F/(W(-)), and {F*} satisfies Assumption 3, then there is a
family {X},., satisfying the Laplace principle in 6, and the rate function /(x) is defined in

eq. (9).
Proof. In order to prove the theorem, we must first prove:
1
lim ¢log E ——R(X?) | = —inf {A(x)+ [(X
¢1g(1)¢ og {exr{ y ( )}} g;g{ () +1(X)}

holds for all real-valued, bounded and continuous functions 7 on 6.
— Firstly, we prove the lower bound. according to Theorem 2, we can obtain:

T .
1 . :
plogk {exp{‘;’” ﬂ} = E [%{ [m(s)lgds +nr? {Wo - ! m(s>fom(s)dsﬁ -

T .
. 1 2 ¢ 1
= inf £ {5 [lIm(s s +nr (W O+ | m(s)ds]}
0 0
a > 0 is fixed at this time, and for each 8 > 0, there exists a m’ € A such that:

T .
. 1 2 '3 1

> E[éi“m%)”ids +hE? [W() +ﬁ ! m¢(s)dsB i

Next, we prove:
T .
I T TR , 1 .
lim me[E ! “m (s)”ods +hE [W(.) +ﬁ .([ m(s)dsD 2 inf {1(x) + h(x)}

without losing generality, we first assume that for all ¢ > 0 and a finite number, S, there are
r 2
J“m¢ (S)Hods <S§ as
0
If R =||A., then there is:

1 2

sup E| — m¢(s) ds [£2R+a<»

p
g0 | 2 0 0

Define the stop time:

rf =inf {t [0, T]: j-“m¢ (s)“jds > S} AT
0

further obtained

V{m¢ # m¢’5} < V{Ium'ﬁ (s)”(z)ds > 5} < 2RS+ a
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The aforementioned results indicate:

t T
E{%‘([“mﬁs (S)“ids +hF? {W() +ﬁ£m¢,3 (S)dS]J _w_a

Therefore, for the proof of m?(s), only m?S(s) substitution is needed. Available from
Assumption 3:

T T T .
;ii% infE{%_[”W (s)“ids +hF? [W(') + ﬁ}!‘mg’ (s)dsﬂ >E %}["m(s)"éds + h[W’ {£m¢(s)dSJJ >

T
> inf {% I ||m(s)||f)ds +h(x)} > il;t‘;{l(x) + h(x)}
{meHXLZ ([O,T]:HO):m_FO[jm(s)ds]} 0

Therefore, the proof of the lower bound is completed.
— Secondly, then prove the upper bound. because the function 7 is bounded and satisfies:

ing{l(x) +h(x)} <o
Therefore, it is assumed that any a > 0, x, € § makes:
. a
I(xy)+h(xy) < 1n£ {I(x) + h(x)} + )

Select:
me [*([0,T]: Hy)

to make
T .
1
Sl ds <100+ %. 5 = F° { | m(s)ds]
0 0

By the Theorem 2, for a bounded continuous function 7(x), there is:

p T .
;1_r)r(1) sup {—qﬁlog E{exp {—%H] = qlﬁl—r>r(1) supE{%}["m(s)”éds +hF? [WC) + ﬁ!m(s)dsﬂ <
T .
. 1 2 @ 1
< lim supE[E ! ()| ds +1F [W(-) +ﬁ‘([m(s)dsﬂ

T .

_1 245 4+ 1i ol Wiy

=3 zl;||m(s)||0ds+¢1)1i13)supE{if“zF [W()+ \/a'([m(s)ds]] <

~ o ey L a
s;%supE[hF (W()+\/$.£m(s)ds]J+l(x0)+2
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Then we can see from Assumption 3 that when ¢ — 0 is:

T
E| hF? W(.)+L m(s)ds
5l

It converges to:
n| F° Im(s)ds = h(x,)
0

it can be expressed as:
ing {Ix)+h(x)}+a (Va)

Theorem 5. Suppose that (m,, a.) is the solution of the stochastic mussel-algae
model (3), then {(m., a,)}.-o satisfies the large deviation principle and the rate function at
C([0, 1];R x C):

I[(m,a)] = inf {%"(//"; }

{meL2 ([0,T}:Hy):(m,, .a, )=(m,a)}

where (m,, a,) is the solution of model (3) and satisfies (m, a) € C([0, 1];R x C).
Proof. According to Theorems 1, Theorems 2, and Theorems 4, we can easily complete
the proof of Theorem 5, so Theorem 5 is completed.
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