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In this paper we investigate a local fractional integral Cauchy-Schwartz inequality 
on fractal spaces. We first obtain a new generalization of local fractional integral 
Cauchy-Schwartz inequality and then study some refinements of the obtained result. 
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Introduction

It is assumed that {Φn}m
n=1 and {Ψn}m

n=1 are two non-negative real sequences, then the 
known Cauchy-Schwartz inequality is the result [1]:
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Let E = [a, b], ћ1(x) and ћ2(x) are continuous functions on E. Then the integral form of 
inequality (1) is called Cauchy-Bunyakovsky inequality [1]:
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The inequalities (1) and (2) have extensive applications not only in pure mathematics 
but also in science and engineering. To date, many generalizations and refinements of inequal-
ities (1) and (2) have been studied. For example, Yang [2] established new generalizations by 
using local fractional calculus as follows.

It is assumed that Φ(v), Ψ(v) ∈ Cλ(a, b), then:
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Φ Ψ ≤ Φ Ψ   Γ + Γ + Γ +   
∫ ∫ ∫ (3)

where Cλ(a, b) is the fractal space which consist of local fractional continuous functions defined 
on the interval [a, b], 0 < λ ≤ 1.

For more generalizations and refinements about inequalities (1) and (2), the reader 
can be referred to [2-8] and the cited references therein. 
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It is well-known that local fractional calculus [2, 5-7, 9-13], established by Yang, has 
become a very useful tool to discuss the continuously non-differentiable functions, as well as 
fractals.

Recently, a new generalization of inequality (2) was established by Montazeri [3]:
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are non-negative and continuous real function sequences on interval [a, b]. Then, in [3], the 
refinement of inequality (4) was derived:
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where p2
1 and p2

2 are the functions associated with ϕl(z), pi, and ϕ(z).
Very recently, Tang et al. [8] generalized the inequalities (4) and (5) to calculus theory 

on time scales.
The motivation of this paper is to study some generalizations and refinements of eqs. 

(4) and (5) by using the local fractional calculus.
The arrangement of this paper is as follows. In section Main results, we establish and 

prove the main results. At last, a conclusion is given. 

Main results

Let Cη(a, b) denote the fractal space which consist of local fractional continuous 
functions defined on the interval [a, b], where 0 < η ≤ 1. It is assumed that {Ωl}l=1 > 0 and  
Ω = ∑n

l=1 Ωl. Next, we state the main results of this paper.
Theorem 1. It is assumed that Ω : = [a, b]. Let φi and ћ be local fractional integrable 

on Ω^ . Then:
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Proof. It is clear that the desired results can be obtained by inequality (6) and a direct 
computation.

For establishing the refinement of inequality (6), we need the following lemma.
Lemma 2. Assume that Ω^  : = [a, b]. Let φl be local fractional integrable on Ω^ ,
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Then rl(µ) is local fractional integrable on Ω^  and ∑n
l=1 Ωrl(µ) = 0. 

Proof. By the assumption and a direct computation, one can directly obtain the con-
clusion.

Theorem 3. Under the assumptions of Lemma 2, if ћ is local fractional integrable on Ω^ :
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then 
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Proof. It is assumed that Ψ1, Ψ2 can be given:
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From rl(µ) we have φl(µ) = r1(µ) + Θ^ (µ). So Ψ1 can be transformed:
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Thanks to the first summation in eq. (7):
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By simplifying the second summation of the eq. (7):
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According to Lemma 2 and the eq. (9), we can infer:

2

1 ˆ ˆ

1 1ˆ2 ( ) ( )(d ) ( )(d ) 0
(1 ) (1 )

n
l

l
l

r
= Ω Ω

  Ω
Θ =    Ω Γ + Γ +  

∑ ∫ ∫ η ηµ µ µ µ µ
η η

(10)

Consequently, based on the eqs. (8) and (10), the eq. (7) can be transformed:
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Based on the definition of Ψ2 , we have:
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By similar to the computation process of Ψ1, we have:
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With the help of the eqs. (11) and (12), we can infer:
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Thanks to the inequality (3) and the assumption of Theorem 3, we have:
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By using the previous discussion, we can yield the two inequalities:
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Let Π 21  and Π 22 can be defined:
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In terms of the expressions of Π2
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Based on the aforementioned inequalities, it can be obtained:

2 2

1 ˆ ˆ

2

2 2
1 2

1 ˆ

1 1( )(d ) ( )(d )
(1 ) (1 )

1 ( ) ( )(d ) max{ , }
(1 )

n
l

l
l

n
l

l
l

η η

η

ϕ µ µ µ µ
η η

ϕ µ µ µ
η

= Ω Ω

= Ω

  Ω
−    Ω Γ + Γ +  

 Ω
− ≥ Π Π  Ω Γ + 

∑ ∫ ∫

∑ ∫





(13)

From eq. (13), we have:
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which is desired results. We finish the proof of Theorem 3.

Conclusion

In this paper, the results established by Montazeri, see [3], is generalized to local 
fractional calculus theory on fractal spaces. The conclusion obtained in this paper shows 
two distinct refinements for local fractional integral Cauchy-Bunyakovsky inequality. 
Some applications of the obtained results of this paper shall be considered in future work. 
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