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Greenhouses are closed environments that allow growing plants out of 

season. Hence, indoor conditions of greenhouses are critically important 

and adjuste to support plant growth. Controlling the indoor environment is 

essential to maintain an ideal microclimate, which directly affects plant 

health and, consequently, their yields. By optimizing environmental 

conditions inside the greenhouse, it is possible to increase yields while 

reducing energy consumption, taking into account information from both 

indoor and outdoor environments, as internal parameters are influenced by 

the external environment. Therefore, the main objective of this study is to 

create a predictive model of key variables, including indoor air temperature 

and relative humidity, in a greenhouse equipped with an integrated thermal 

storage system located in southern Algeria (in Ghardaïa). The greenhouse's 

microclimatic data were gathered daily for two months during the winter 

period. A total of 2833 input samples were collected and analyzed based on 

the Levenberg-Marquardt training algorithm model. This model uses 

meteorological variables as inputs and evaluates them with Artificial Neural 

Network techniques. The back-propagation neural network training was 

divided into three sets for testing (15%), validation (15%) and training 

(70%). The results of applying neural network technology proved highly 

satisfactory in predicting indoor temperature and relative humidity, with 

correlation coefficients estimated at 0.984 and 0.975 respectively, enabling 

successful management of the indoor environment for optimal yield. 
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1. Introduction 

The global nature of the energy challenges in arid and semi-arid areas requires that particular 

emphasis be placed on the management and rational use of local renewable energy sources in various 

activities as industrial, agricultural and environmental. Exploiting solar energy is a priority in the 

agricultural sector, and is especially valuable when it comes to meeting the energy needs for heating or 

cooling greenhouses. Greenhouses are complex and multifunctional systems where plants are grown 

outside their natural season and can create a microclimate suitable for agricultural production. They 

can be considered confined environments in which multiple components exchange energy and matter. 

Their thermal behavior is influenced by several factors [1, 2]. Thermal storage improves the 

greenhouse microclimate, making it more sustainable and efficient [3], which in turn contributes to 

higher agricultural yields. 

According to the latest statistics, there are approximately 3.64 million hectares of greenhouses 

in the world [4]. Greenhouse agriculture in Algeria plays a crucial role in the country’s economy. The 

country has enormous solar potential and vast agricultural lands, ebanling a significant expansion of 

greenhouse cultivation from 7,859 hectares in 2010 to 21,025 hectares in 2022 [5]. Although 

renewable energy is widely used to power greenhouses, there is insufficient focus on properly 

monitoring and managing indoor environmental factors, such as temperature and humidity. Therefore, 

the intelligent control and management of  greenhouses are paramount. 

Many research studies have focused on controlling the indoor climate of the greenhouse with 

different modelling approaches such as physical-law greenhouse models [6, 7], simulation by 

computational fluid dynamics [8, 9], and artificial intelligence-based prediction methods [10, 11]. 

Artificial Neural Network (ANN) models are powerful predictive tools for the relationship between 

external climate data and those inside the greenhouse by analyzing diverse factors such as temperature 

[12], solar radiation [13], relative humidity [14], and CO2 concentration [15]. Lee et al. [16] develops 

AI-GECS, an automated system integrating weather and microclimate forecasts with AI to optimize 

greenhouse conditions. It was tested in an experimental greenhouse in Taiwan, demonstrating 

improved agricultural management by reducing costs and increasing efficiency. The results confirmed 

its potential for more sustainable and climate-resilient agriculture. Seginer et al. [17] have presented 

neural network models for controlling greenhouse climate. The ANN model is a useful method: as a 

model for optimal environmental control and as a screening tool for physical model development. 

Zeng et al. [18] have used ANNs for predicting two parameters in greenhouse microclimate, 

temperature and relative humidity. They have taken into consideration solar radiation, wind speed, 

carbon dioxide concentration, heating, ventilation, and carbon dioxide injection. Furthermore, Laribi et 

al. [19] used multimode modeling and neural networks to predict greenhouse microclimates based on 

external factors. This highlights the benefits of integrating ANN into smart greenhouse control 

systems. Interesting results were obtained by Petrakis et al [20]. The model created by using ANN for 

the greenhouse gave the lowest error value between the observed and predicted data. In a study by 

Taki et al. [21] ANN and SVM models were compared to estimate air, soil, and plant temperatures in a 

polyethylene greenhouse in Iran. The results showed that the ANN model outperformed the others, 

providing accurate predictions with low root mean square error (RMSE) and mean absolute error 

(MAE) values, ensuring a reliable estimation of energy loss. 

From the literature review, it can be observed that the ANN method is rarely used in 

greenhouses equipped with heating or cooling systems. However, the exploration and use the artificial 
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neural network approach to analyzing the internal environment of an integrated greenhouse with a 

solar thermal storage system have not been thoroughly and comprehensively investigated, despite its 

critical role in optimizing and localizing thermal storage in its various forms. Although ANN models 

are increasingly applied in greenhouse microclimate prediction, the most existing studies focus on 

conventional greenhouses without incorporating energy storage systems or real experimental data. In 

contrast, this study proposes a novel approach by applying ANN modeling to a greenhouse equipped 

with a rock-bed thermal storage system, based on a comprehensive dataset collected under real 

climatic conditions in a semi-arid region. This integrated modeling and data-driven analysis provide a 

more realistic and energy-efficient solution, addressing the combined effects of climatic variables and 

thermal storage behavior. Furthermore, the inclusion of sensitivity analysis enables the identification 

of dominant environmental drivers, offering valuable guidance for improved greenhouse design and 

intelligent climate control strategies. 

Considering the above, the aim of this work is to use artificial neural networks to create a model 

that allows precise control, in particular prediction of climatic parameters, such as indoor temperature 

and relative humidity, inside a greenhouse equipped with thermal storage through a rock bed, 

constructed at the Applied Research Unit for Renewable Energies (URAER) in Ghardaia/Algeria. This 

model forms the basis for further research on microclimate control, providing valuable insights for 

future designers and builders of advanced greenhouses with thermal storage systems. 

2. Materiel and methods 

2.1. Experiment site and materials 

In this study, an experimental tunnel greenhouse equipped with a thermal storage system was 

implemented in the (URAER), which is situated 20 km of Ghardaïa, Algeria. It is located at an altitude 

of 469 m above sea level, with a latitude of 32°38' N and a longitude of 3°81' E (Fig. 1). Solar energy 

and daily heat storage were harnessed within a rock-bed heat storage system using the sensible heat 

storage technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Location geographical of the experiment 



4 

 

The greenhouse had a semi-cylindrical shape and was oriented north-south, with a slight 

deviation of approximately 20 degrees to the west. It was covered with a 0.18 mm thick low-density 

polyethylene material containing ultraviolet and infrared stabilizers to protect the plants inside. The 

tunnel greenhouse measured 8 m in width, 25 m in length, and 3 m in height. 

During the data collection process, microclimatic parameters such as temperature, relative 

humidity, and solar radiation were analyzed and recorded inside and outside the greenhouse. An 

Automatic Weather Station (WS2 550) from La Crosse Technology was installed to monitor air 

temperature, relative humidity, and atmospheric pressure in the greenhouse. Global solar radiation 

transmitted through the cover is monitored with the use of pyranometer situated just above the crops 

and it is connected to data acquisition unit of Agilente (34970A type). The sensor of the pyranometer 

is basically, thermocouples of white and black type having EPPLY model 8-48  (serial N° 27037). It 

measures the global radiations inside the greenhouse on horizontal surface with 1% precision and 

sensibility approximately of 9.94 10-6 V/W.m-2. A radiometric station solys2 with a KYPP and 

ZONEN pyranometer measured the global solar radiation on a horizontal surface outside the 

greenhouse (Fig. 2). Metrological station automatically recorded outside temperature, relative 

humidity, wind direction, and wind speed. To provide a comprehensive understanding of the 

experimental setup and measurement equipment used in this study, the following description has been 

structured in accordance with the relevant literature [22]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. An overview of all the experiments: (a) greenhouse with storage system, (b) 

shelter/server, (c) meteorological station, (d) radiometric station, (e) agilente device and (f) 

comsol station wse-550 

 

To accurately control and predict the inside temperature and relative humidity, an Artificial 

Neural Network (ANN) algorithm was utilized. In this study, a total of 2833 data samples were used, 

and six meteorological variables serving as input parameters: outside temperature (°C), relative 

humidity (%), wind speed (m s-1), wind direction (degrees) and solar radiation (w m-2) from the both 
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side of the greenhouse. The inside temperature and relative humidity were considered as the target 

outputs. 

Daily data analyses of meteorological parameters measured outside the greenhouse are 

presented in Figures 3(a), 3(b), 3(c) and 3(d). As shown in fig. 3(a), the minimum and maximum 

temperatures ranged from 1.5°C to 13°C and from 14°C to 26°C, respectively. Relative humidity 

exhibited daily minimum and maximum values of approximately 16% and 87%, as illustrated in Fig. 

3(b). Regarding global solar radiation, measurement data indicate that irradiation values are high 

during the summer months and relatively low during the winter season, as depicted in Fig. 3(c). 

Additionally, wind speed, as shown in Fig 3(d),  was randomly distributed throughout the year. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. The inputs parameters meteorological of the ANN: (a) air temperature (b) relative 
humidity, (c) solar radiation (d) wind speed  

 

As shown in Table 1, the inputs and outputs database underwent static analysis. The values of 

standard deviation (STD), mean, minimum (Min), and maximum (Max) have been displayed. 

 
Table 1. Factors statistics of inputs and outputs 

Factors STD Mean Min Max 

Outside radiation 241.85 164.93 0 798.50 
Outside temperature 4.718 12.05 0.3 26 

Outside humidity 15.30 45.83 16 90 
Wind speed 3.63 4.29 0 17.65 

Wind direction 117.61 194.25 0 355 
Inside radiation 176.55 120.40 0 582.90 

Inside temperature 9.645 18.08 3.1 44.1 
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Inside relative humidity 15.84 41.67 11 82 

2.2. Modelling with Neural Network 

Recently, artificial neural networks (ANNs) have gained widespread recognition across various 

engineering fields for their effectiveness in modeling non-linear relationships between input and 

output data. In agriculture, particularly in greenhouse systems, ANNs are increasingly utilized. 

According to the literature, they often produce better analytical results than conventional statistical 

methods [23] and provide an appropriate control strategy for process optimization. 

The feed-forward neural network (FFNN) was chosen for its high performance, primarily due to 

its strong ability in modeling complex nonlinear relationships, which is particularly relevant for 

greenhouse microclimate prediction. Given the complex interactions between outdoor climatic 

conditions (temperature, solar radiation, wind) and indoor variables (air temperature and humidity), 

FFNN provides an effective predictive framework for capturing these dependencies. This architecture 

was selected due to its fast convergence, multi-input multi-output capability, and proven effectiveness 

in prior agricultural studies [21, 24]. Additionally, the Levenberg-Marquardt algorithm was used to 

optimize training performance, ensuring reliable predictions with minimal error. The organization of 

artificial neurons occurs in a layered manner, and the relationship is represented by eq. (1): 

1
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The proposed ANN architecture is given in Fig. 4. The model consist of seven neurons in the 

input layer, twenty-four neurons in the hidden layer and two neurons in the output layer. Inner, outer 

irradiation, outside relative humidity and temperature, wind speed/direction and time were selected for 

input data. The output are the inside air temperature and relative humidity of greenhouse. 

In this study, 2833 datasets were collected for training and testing. 70% of the data was used for 

training, and 15% each for validation and testing, selected randomly. The ANN models were 

implemented in MATLAB to evaluate performance. The proposed ANNs were implemented in Matlab 

software to evaluate the developed models' performance. 

 

 

 

 

 

 

 

 

 
Figure 4. ANN architecture of the present work 

 

Several statistical methods have been used in the literature to evaluate the robustness of ANN 

models [25], the correlation coefficient R is one of the most stringent criteria for comparing the final 

performance of different networks.The root mean square error (RMSE) is used as a criterion for  

minimizing errors during network optimization, while mean absolute error (MAE) is calculated for the 

predicted inside air temperature and relative humidity. Additionally, other statistical measures such as 
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the mean absolute percentage error (MAPE) or the coefficient of determination R² can provide a more 

comprehensive assessment of performance. The equation used to express these statistical parameters 

are listed below: 
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3. Results and discussion 

3.1 The ANN model performance analysis 

Due to its fast convergence and high network performance, the trainlm algorithm of Levenberg-

Marquardt was used in this study. This choice is justified by the algorithm's ability to achieve the 

highest correlation coefficient while minimizing errors. The Levenberg–Marquardt back- propagation 

algorithm used to determine the optimal network structure, expressed through the transfer function 

which connects the inputs (x1,……,x7), weights and bias. The relationship between these variables is 

described by the following equation: 
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Subsequently, the Logsig sigmoid transfer function (fh) was utilized in hidden layer eq. (7), 

while and the Tansig is the (tangent sigmoid) transfer function (fo) was applied in the output layer eq. 

(8). The target parameters, namely the inside air temperature (Tin) and relative humidity (Hin) are 

described by the output function, which is expressed by eq. (9). 
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The mathematical equation of model is the combination of all eqs. (6), (7), (8) and eq. (9), The 

neural network can model and predict greenhouse parameters to optimize the internal environment. 

In the current research, the neural network algorithm successfully predicted the indoor 

environment parameters of the greenhouse. After performing the procedure of neural training and 
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testing the model for different numbers of hidden layer nodes the ANN multilayer feed-forward back 

propagation network provides the best topology (7-24-2) corresponds to (input layer - hidden layer - 

output layer), which gave the model the most reliability and robustness. Fig. 5 presents the topology 

extracted from MATLAB of the structure of the model used. 

 

 

 

 

 

 

 

 

Figure 5. The optimal model of ANN architecture 

 

The performance of the ANN model is indicated in Fig. 6 for all three phases of data at 

increasing epochs.  It can be noted that the training MSE decreases drastically up to epoch 10 after 

observed stability for the three types of data up to epochs 94. The optimal neural model structure for 

the database is given a best MSE value of 7.8936 of sets at epoch 88. In addition, the error values for 

the test and validation subset exhibit similar characteristics, indicating the model's consistency and 

generalization capability. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. MSE convergence throughout different epochs 

 

Figure 7 illustrates the regression results of the ANN training for the three phases: training, 

validation, and testing for both variables. Fig. (7a) displays the performance of the training phase, 

where the statement shows the ability of the model to predict the training data as it was used for 

training through the value of R, which reaches a maximum value of 0.98949. The network accurately 

predict the training data confirming that selecting the optimal number of input and output parameters 

enhances network performance. The validation process is performed once after each iteration to assess 

the network's performance on data. Fig. (7b) illustrates the validation dataset’s arrangement where the 

trained network achieves an R-value of up to 0.98777. Fig. (7c) displays the generalization capability 

of the trained network, with a performance represented by an R-value of 0.98415 for the testing phase. 
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Fig. (7d) shows all data points from the training, validation, and prediction phases and their 

corresponding ANN model outputs. 

(a) (b) (c) (d) 

Figure 7. Regression plot of each phase: training, validation, testing and overall dataset 

 

The evaluation of the model for predicting the microclimate of the solar greenhouse was 

performed based on the calculated errors. For the indoor temperature RMSE and MAE were found to 

be = 0.9680°C and 0.7258°C, respectively. Regarding relative humidity, the errors were of 3.46 % for 

RMSE and 2.67 % for MAE respectively. These results show that the model for predicting the two 

factors (inside temperature and relative humidity) of the greenhouse is satisfactory to a quite 

remarkable degree, at the same time we notice that there is not a big difference between the values of 

MAE and the RMSE indicating the absence of significant errors produced by the model for the two 

parameters studied according to the results indicated in Table 2. 

To further evaluate the prediction performance, additional metrics such as (R²) and (MAPE) 

were calculated. The high R² values (0.969 for temperature and 0.950 for relative humidity) indicate a 

strong goodness of fit, while the low MAPE values highlight the model’s consistent accuracy across 

different data ranges. 

 

Table 2. Statistical metrics: R, R2, RMSE, MAE, MAPE , Linear equation: 𝐲𝐩𝐫𝐞𝐝𝐢𝐜𝐭 = 𝛂𝐲𝐞𝐱𝐩 + 𝛃 

Parameters α β R R2 RMSE MAE MAPE 

Inside temperature 1.005 -0.086 0.984 0.969 1.67 1.257 7.83 

Inside relative 
humidity 

0.998 0.068 0.975 0.950 3.46 2.67 7.46 

 

Fig. 8 and Fig. 9 present a comparison between the prevision results obtained by the developed 

ANN model and the experimental data for temperature and relative humidity inside the heated 

greenhouse, respectively. It is clearly observed that the predicted values closely follow the 

experimental trends throughout the evaluation period, indicating a strong agreement between the 

model outputs and real measurements. This is further confirmed by the high correlation coefficients (R 

= 0.984 for temperature and R = 0.975 for relative humidity) and low error values (RMSE and MAE) 

reported earlier. However, some minor deviations are noticeable, particularly during peak thermal 

storage activity periods. These discrepancies, more evident in temperature predictions, are attributed to 

the dynamic nature of heat release and absorption in the rock-bed thermal storage system, which 

introduces short-term fluctuations that are not fully captured by the current input parameters. The 

model’s performance could be improved by incorporating additional inputs, such as storage system 
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temperature or control timing parameters. Nevertheless, the overall strong fit of the model confirms its 

reliability and robustness in accurately simulating greenhouse microclimate conditions. 

 
 

Figure 8. Comparison between experimental and estimated temperature of greenhouse 
 

  

Figure 9. Comparison between experimental and estimated relative humidity of greenhouse 

3.2 Sensitivity study 

The study of the sensitivity of local climate parameters in the greenhouse is crucial, as it relies 

on formulas provided in the literature and the method originally proposed by Garson [26], which 

assesses the contribution of different input variables. The sensitivity analysis of the seven selected 

input parameters and their impact on the expected outputs was conducted by creating a weight matrix, 

which was subsequently applied following the approach outlined by Adda et al. [25]. 

According to the results of the weight method, we calculated the influence of each input factor 

on the target outputs in the network. By analyzing these two parameters, we were able to develop our 

neural network optimal to predict the prevailing indoor climate in the greenhouse, enabling effective 

climate control and ultimately leading to improved crop yields both quantitatively and qualitatively. 

Fig. 10 present the percentages of relative importance (obtained by the weights method) of each 

input variable of the ANN on the relative humidity and air temperature inside the greenhouse. The 

phenomena of forced convection and heat transfer significantly impact the internal environment of the 

greenhouse. Furthermore, the sensitivity analysis revealed that outdoor air temperature, solar radiation, 
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and indoor radiation are the most significant factors influencing the greenhouse’s microclimate, with 

relative contributions of 18%, 15%, and 14%, respectively. These variables directly affect thermal 

energy accumulation and dissipation within the rock-bed thermal storage system, thus playing a 

crucial role in optimizing energy efficiency. The strong influence of outdoor temperature and solar 

radiation highlights the necessity of precise thermal management strategies to reduce energy losses 

and improve heating efficiency in greenhouses. Furthermore, maintaining a stable indoor temperature 

and humidity enhances plant growth conditions, leading to improved agricultural productivity. These 

findings underscore the importance of real-time monitoring and adaptive control strategies for 

optimize greenhouse performance in semi-arid regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Influence of input parameters on the output target 

Conclusion 

The integration of artificial neural networks (ANN) in managing the internal environmental 

parameters of greenhouses offers promising prospects for modern agriculture. In this study, an ANN 

model was developed to enhance the microclimatic performance of a solar greenhouse equipped with a 

thermal storage system in southern Algeria, characterized by a semi-arid climate using outdoor 

meteorological data as inputs. 

The neural network, based on the Levenberg-Marquardt algorithm, was structured into three 

distinct layers and was effective in capturing the complex climatic variations that influence the indoor 

conditions of the greenhouse. Validation and testing of the model revealed high correlation 

coefficients (R=0.984 for temperature and R=0.975 for humidity), confirming its robustness and 

reliability. A sensitivity study also highlighted that external ambient temperature is the most influential 

factor affecting indoor conditions, emphasizing the importance of precise control of this parameter. 

Furthermore, the model’s ability to predict key variables with high precision allowed for 

optimized energy management of the greenhouse. Enhancing thermal storage contributes to stabilizing 

indoor climate conditions, thereby improving the overall system efficiency. Future research will focus 

on enhancing the model by integrating it into real-time adaptive control systems, allowing automated 

adjustments to greenhouse parameters based on dynamic environmental conditions. Additionally, the 

model could be expanded and validated for different greenhouse configurations, structural materials, 

and climatic zones, enabling broader application across various agricultural contexts. Incorporating 
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additional variables such as CO₂ levels, soil temperature, and plant growth feedback could also 

improve predictive accuracy and decision-making support in smart greenhouse systems. 
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