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In this paper, we consider the convergence in L2 norm, uniformly in time of the 
inhomogeneous Navier-Stokes system and inhomogeneous Euler equations. Upon 
the assumption of the Oleinick conditions of no back-flow in the trace of the Euler 
flow, and of a lower bound for the Navier-Stokes vorticity in a Kato-like bound-
ary-layer, we prove that the inviscid limit holds.
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Introduction

We are concerned with the incompressible inhomogeneous Navier-Stokes equations:	
div( ) 0

0
div 0

t

t

u
u u u u P

u

ρ ρ
ρ ρ ε

∂ + =
∂ + ⋅∇ − ∆ +∇ =

=
(1)

and incompressible inhomogeneous Euler equations:
div( ) 0

0
div 0

t

t

u
u u u P

u

ρ ρ

ρ ρ

+ =

∂ + ⋅∇ +∇ =
=

(2)

in the half plane Ω = {x = (x1, x2) ∈ R2 : x2 > 0 with Dirichlet and slip boundary:
| 0u Ω∂ = (3)

and
2 | 0u Ω∂ = (4)

on the Navier-Stokes eq. (1) and the Euler eq. (2), respectively, where u = (u1, u2) and  
ū = (ū 1, ū2) are velocity, P, P̄ are the pressure, and ρ, ρ̄  are the density. 

The initial conditions for eqs. (1) and (2) are taken to be the same, u0 = ū0. We shall 
also denote the Navier-Stokes vorticity:

1 2 2 1w u u= ∂ − ∂ (5)
where ∂j = ∂/∂xj and the trace of tangential component of the Euler flow:

1U u ∂Ω= (6)
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The behavior of viscous incompressible flows in the inviscid limit is a classical issue 
in the fluid dynamics. When the fluid domain has no boundary, it is well known that the solution 
of the Navier-Stokes equations converges to the one of the Euler equations, and this problem 
is closely related to the boundary-layer problem and Prandtl equation. There have abundant 
literatures on the problem of inviscid limits, see [1-6] and references therein. In particular, Con-
stantin [7] considered the convergence in the L2 norm, uniformly in time, of the Navier-Stokes 
equations with Dirichlet boundary conditions to the Euler equations with slip boundary condi-
tions, and proved that if the Oleinik conditions of no back-flow in the trace of the Euler flow, 
and of a lower bound for the Navier-Stokes vorticity is assumed in a Kato-like boundary-layer, 
then the inviscid limit holds. Maekawa [8, 9] also considered the Navier-Stokes equations for 
viscous incompressible flows in the half-plane under the no-slip boundary condition. By the 
vorticity formulation, he proved that the local-in-time convergence of the Navier-Stokes flows 
to the Euler flows outside a boundary-layer and to the Prandtl flows in the boundary-layer in 
the inviscid limit when the initial vorticity is located away from the boundary. Paddick [10] 
obtained the existence and the conormal Sobolev regularity of strong solutions to the 3-D com-
pressible isentropic Navier-Stokes system on the half-space with a Navier boundary condition, 
over a time that is uniform with respect to the viscosity parameters when these are small. Then 
these solutions converge globally in space and strongly in L2 towards the solution of the com-
pressible isentropic Euler system when the viscosity parameters go to zero. Recently, there also 
have been extensive efforts on resolving this inviscid limit problem which lead to many results, 
for example, see [11-15].

Especially, Masnoudi [16] have shown that, without using the Prandtl equation, and 
in some particular domains such as the half-space, if the ratio of vertical viscosity to horizontal 
velocity also goes to zero, then all the weak solutions of the Navier-Stokes equations converge 
to the solution of the Euler system. In this paper, inspired by this work, we prove the following 
results.

Main results

Theorem 1. Fix T > 0 and s > 0, and consider classical solutions (ρ, u, P), (ρ̄ , ū, P ̄) ∈ 
L∞ (0, T; H s) of (1) and (2), with boundary conditions (3) and (4), respectively. Assume that the 
trace of Euler tangential velocity satisfies U(x1, t) ≥ 0, and that for all ε > 0 sufficiently small, 
the trace of Navier-Stokes vorticity satisfies w|∂Ω ≥ 0, for all x1 ∈ R and t ∈ [0, T]. Then:

2 2

2 2

(0, ; ( )) (0, ; ( ))
0

L T L L T L
u u

Ω Ω
ρ ρ ∞ ∞− + − → (7)

holds as ε → 0.
Theorem 2. Fix T > 0 and s > 0, and consider classical solutions (ρ, u, P), (ρ̄ , ū, P̄) ∈  

L∞(0, T; Hs) of (1) and (2), with boundary conditions (3) and (4), respectively. Let σ(t) = min{t, 1} 
and let Mε be a positive function which satisfies:

0

( )d 0 as 0
T

M t tε ε→ →∫ (8)

Define the boundary-layer Γε:

1 2 2
( )( , ) : 0 ln

( ) ( )
t Cx x x

C M t tε
ε

εσΓ Ω
σ

   = ∈ < ≤  
   

(9)

where

	 (0, ; ) (0, ; )
( , , , ) 0sL T L L T H

C C u uρ∇ρ ∞ ∞ ∞= >
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is a sufficiently large fixed positive constant. Assume that there is no back-flow in the trace of 
the Euler tangential velocity, i.e.:

1( , ) 0U x t ≥ (10)
for all x1 ∈ R and t ∈ [0, T], and that for all ε sufficiently small, the very negative part of the 
Navier-Stokes vorticity satisfies:

( 1)/ 1/
1 2

( ( ))

( )
( , , ) ( ) ( )

r

r r r

L t

M t
w x x t t M t

ε

ε
ε

Γ

ε
ε

σ− + ≤ (11)

for some 1 ≤ r ≤ ∞ and all t ∈ [0, T], where f– = min[f, 0]. Then the inviscid limit:
2 2(0, ; ( )) (0, ; ( ))

0
L T L L T L

u u
Ω Ω

ρ ρ ∞ ∞− + − → (12)
holds, with the rate of convergence:

2 2

2

(0, ; ( )) (0, ; ( ))
0

( ) ( )d
T

L T L L T L
u u O N T M t tεΩ Ω

ρ ρ ε∞ ∞

 
− + − = + 

 
∫ (13)

as ε → 0, for N(ε) = O(ε) when r > 1 in eq. (11) and N(ε) = O(εδ), ∀δ ∈ (0, 1) when r = 1 in eq. (11).
Remark 1. From the results in [10], the uniform estimates of ||ρ,∇ρ, u||L∞(O,T; L∞) are 

reasonable.
Remark 2. Theorems 1 and 2 are also holds for a bounded domain with a smooth 

boundary. The only difference between the half space and the bounded domain with a smooth 
boundary is that we need to choose a local compactly supported boundary-layer corrector. 

For simplicity, we denote:

	
and dfdx f f x f

Ω
Ω Ω∂ ∂

= =∫ ∫ ∫ ∫

and L2 norm ||u||L2(Ω) = ||u||.

Proof of Theorem 1

Let ϕ = ρ – ρ̄ , q = P – P̄ and v = u – ū  be the differences of density, pressure and ve-
locity, respectively. Then we can get the equation about ϕ, q, v:

0
( ) 0,

div 0

t

t t

v u
v v v v u u v q u u u u x

v

φ ρ φ
ρ ρ ρ ρ ε φ Ω

+ ∇ + ∇ =
∂ ⋅+ ∇ + ∇ + ∇ +∇ − ∆ + +

⋅ ⋅
⋅ ∇ ∈⋅ ∂ =

=
⋅ (14)

with boundary conditions:

1 2, 0v U vΩ Ω∂ ∂= − = (15)
and the initial condition:

( 0, ) 0v t x= = (16)
Next, we will prove Theorem 1 by estimating the solution of the system (14)-(16). 

Computing ∫(14)1ϕdx, we have:

	
2 2d 1 0

d 2
v u

t
φ ρφ φ+ ∇ + ∇ =∫ ∫

Then by the Young’s inequality and properties of solutions (ρ, u, P) and (ρ̄ , ū, P ̄):

( )2 2 2d
d

C v
t
φ φ≤ + (17)
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Computing ∫(14)2vdx, we have:
[ ]( ) d 0t tv v v v u u v q u u u u xρ ρ ρ ρ ε φ∂ + ∇ + ∇ + ∇ ∇⋅ + − ∆ + ∇⋅ ⋅+⋅ ∂ =∫ (18)

Observe that if U ≥ 0 and w|∂Ω ≥ 0, then we estimate:
2 2 2

2 1 1d
2

uv x u v u v v u v wU v C u
Ω Ω

εε ε ε ε ε ε ε
∂ ∂

− ∆ = ∇ ∇ − ∂ = ∇ + ∇ ∇ − ≤ ∇ + ∇∫ ∫ ∫ ∫ ∫ .
Furthermore, by direct calculus, one can obtain:

	
( ) ( )

2 2

2 2

2 2

1 d 1
2 d 2

,

0,

t

t

vv v vv v u v
t

v uv C v u vv C v

qv u u u v C v

ρ ρ ρ ρ

ρ ρ

φ φ

∂ + ∇ ≤ + ∇

∇ ≤ ∇ ≤⋅⋅

∇ = ∂ + ∇ ≤ +

⋅ ⋅

⋅

∫ ∫ ∫

∫ ∫
∫ ∫ 	  

The combination of eq. (18) and the aforementioned inequality implies:

( )2 2 2d
d

v C C v
t

ε φ≤ + + (19)

From eqs. (17) and (18), immediately we have:

( ) ( )2 2 2 2d
d

v C C v
t

φ ε φ+ ≤ + + (20)

Then by the Gronwall inequality and the initial condition, we get:
2 2v C tφ ε+ ≤ (21)

This completes the proof.

Proof of Theorem 2

Constructing a suitable boundary-layer corrector, φ, to account for the mismatch be-
tween the Euler and Navier-Stokes boundary conditions is a very important method for the 
proof of the zero viscosity limit [3]. For instance, Gie and Kelliher [6] proved the convergence, 
as ε tends to zero, of the Navier-Stokes solutions to the Euler solution both in the natural energy 
norm and uniformly in time and space by constructing an explicit corrector. Kelliher [17] gave 
a brief comparison of various correctors and established necessary and sufficient conditions for 
solutions to the Navier-Stokes equations with Dirichlet boundary conditions to converge in a 
strong sense to a solution the Euler equations if the viscosity is taken to be zero. 

Now firstly, we begin with the construction of the corrector as follows.
The boundary-layer corrector. Choose ψ : [0, ∞) → [0, ∞) to be a C∞ function, sup-

ported in [1/2, 4], which is non-negative and has mass ∫ψ(z)dz = 1. Recall that σ(t) = min{t, 1}. 
For α ∈ (0, 1], to be chosen later, we introduce:

	 1 2 1 2 1 2( , , ) ( , )( , , )x x t x x tϕ ϕ ϕ=  
where

2 / ( )
1 1 2( , ) e ( ) ( )x tU x t t x− = − − 

ασϕ ασ ψ (22)

( )2
2 / ( )

2 1 2 1 1 0
( , , ) ( ) ( , ) 1 ( )d e

x x tx x t t U x t y y ασϕ ασ ψ − = ∂ − −  ∫ (23)
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and

	 1 2 0 1 2( , ,0) ( , )x x x xϕ ϕ=  
The corrector φ has following properties.
Lemma 1.

	– φ1(x1, 0, t) = – u(x1, t), φ2(x1, 0, t) = 0, so ū  + φ = 0 on ∂Ω and φ1 → 0 as x2 → ∞ exponen-
tially,

	– divφ = 0, and
	– following estimates hold for 1 ≤ p ≤ ∞:

	
1/

1 1 1 2 1 2( ,)p p p p
p

L L L L
C Cϕ ϕ ασ ϕ ϕ ασ+ ∂ ≤ + ∂ ≤

Energy equation. We can rewrite the second equation in [14] as:
( ) ( ) 0t t tv v v v u u v q u u u uρ ϕ ρ ρ ρ ε φ ρ ϕ∂ − + ∇ + ∇ + ∇ +∇ − ∆ + ∂ + ∇ +⋅ ∂⋅ ⋅ =⋅ (24)

Since v – φ = 0 on ∂Ω, we may multiply eq. (24) by v – φ and integrate by parts to obtain:

	 ( )( ) ( ) ( ) 0t t tv v u u v q u u u u vρ ϕ ρ ρ ε φ ρ ϕ ϕ∂ − + ∇ + ∇ +∇ ∂⋅ − ∆ + + ∇ + ∂ −⋅ =⋅∫
Next, we will estimate all previous terms:

2 21 d 1( )( ) ( ) ( )
2 d 2t v v v u v

t
ρ ϕ ϕ ρ ϕ ρ ϕ∂ − − = − + ∇ −⋅∫ ∫∫ (25)

2

( ) ( ) ( ) ( )

1 ( ) ( ) ( )
2

v u v v u v u v

v v v u v u v

ρ ϕ ρ ϕ ϕ ρϕ ϕ

ρ ϕ ρ ϕ ϕ ρϕ ϕ

∇ − = − ∇ − + ∇ − =

= −

⋅

⋅− ∇ − + − +

⋅ ⋅

⋅ ⋅∇ − ∇

∫ ∫ ∫

∫ ∫ ∫
(26)

From eqs. (25) and (26), we have:
22

2 2

1 d( )( ) ( ) ( ) ( )
2 d

( ) ( )( ) ( ), ( ) 0

3( ) ( )
4

t v v v u v v v u v
t

u v v u v v u v q v

u v u v u u u u u C u

ρ ϕ ϕ ρ ϕ ρ ϕ ϕ ρϕ ϕ

ρ ϕ ρ ϕ ϕ ρ ϕ ϕ ϕ

ε ϕ ε ϕ ε ε ε ϕ ε ε ε ϕ

∂ − − + ∇ − ≥ − − − + ∇ −

∇ − = ∇ − − + ∇ − ∇ − =

− ∆ − = ∇ ∇ − = ∇ − ∇ ∇ − ∇ ∇ ≤ ∇ − − ∇

⋅

∇

⋅ ⋅

⋅ ⋅

∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫ ∫ ∫

(27)

Then we have: 

( )

1 2

2 2

2

2

1 d 3| |
2 d 4

( ) ( )t t

v u
t

C v u u u u u u

I

v

IC v

ρ ϕ ε

ϕ ε ϕ ρϕ ρ ϕ φ ρ ϕ ϕ

ϕ

− + ∇

≤ − + ∇ ∇ + ∇ − ⋅∇ ∂

≤

⋅ − ∂ + ∇ − −

−

⋅

+= +

=

∫

∫ ∫

 

(28)

Firstly, we deal with I1 = ε∫∇u∇φ.
( )1 1 1 1 1 1 2 1 2 2 1 2 1 2 2 2 2I u u u u uε ϕ ε ϕ ϕ ϕ ϕ= ∇ ∇ = + ∂ + ∂ + ∂∂ ∂ ∂ ∂ ∂∫ ∫ (29)

From Lemma 1, we see:
2

1 1 1 1 1|
8

u u Cεε ϕ εασ≤ ∂∂ ∂ +∫ (30)

2
1 2 1 2 1 28
u u Cεε ϕ εασ≤ ∂∂ ∂ +∫ (31)
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2
2 2 2 2 2 28
u u Cεε ϕ εασ≤ ∂∂ ∂ +∫ (32)

	 For the term ε∫∂2u1∂2φ1, observe that w = ∂1u2– ∂2u1. Thus, for some β ∈ (α, 1/4) and  
M > 0, we use the bound:

1 2 1 2 1 2( , , ) ( , , ), ( , ) (0, ), [0, ]Mw x x t w x x t x x R t TβΓ β
ε

≥ − + ∈ ∈⋅= (33)

where

	
1 2 1 2( , , ) min ( , , ) ,0 0Mw x x t w x x t

ε
 = + ≤ 
 



Then we can decompose:

	
2 2 2 2 1 2 2 1 2 3

C

u w w u J J J
Γ Γ

∂ = − ∂∂ ∂ ∂− ∂ + = + +∫ ∫ ∫ ∫
β β

ε ϕϕ ε ϕ ε ϕ ε

By the construction of corrector, φ,we have the explicit formula:

2 /
2 1 1 2

1 ( , )e ( , ) ( )xU x t U x t xασϕ ασ ψ
ασ

− ′= −∂ (34)

for all (x1, x2) ∈ Ω and t ∈ [0, T]. Using the no-back-flow condition U ≥ 0 and the bound  
eq. (30), for r ∈ [1, ∞], we have:

2

2

2 2 2

/
1 1

/
1 2

( 1)/
/ / ( 1) 2

( )

2 1/

( , )e

e( , )e / ( e

( 1)(1 e ) (1 e ) (

)
1

)

)

(
2

R R

r

r

x

x

x x x

r r
r r

L

r
L

J wU x t U

M vU x t x wU wU

C rCM w C u C
r

u CM C w

Γ

−

−

< < <

−
− − −

Γ

Γ

−

= − + ≤

≤ − + − + ≤

−
≤ − + − + ∇ +

≤ ∇

′

′

  ≤ 

+ +



∫ ∫

∫ ∫ ∫





β

ασ

ασ

β β β

β ασ β ασ

εασ ψ
ασ

ασ εασ ψ
ασ ασ

ε ασ εασ ε ασ
α

ε

σ
ε ε ασ

( )Γβ

(35)

For J2:

2

2

/
2 2

/
2 2 / 2

1/2

1 e ( )

e e ( )
12( )

x

x

J wU x

CC u u nau C

−

>

−
−

 = − − ≤ 
 

≤ ∇ + ∇ ≤ + +

′∫ ασ

β

β ασ
β ασ

ε ασψ
ασ

ε ε εεασ ε ασ
ασασ

(36)

Lastly, using the Yang’s inequality and Lemma 1, one has:
2

3 ( )
12

J u Cε ε ασ≤ ∇ + (37)

Combining eqs. (29), (30)-(32), and eqs. (35)-(37), we have:
2 1/ 2 /

( )
( ) e

2 r
r C

L

Cu u CM C w C− −
Γ

∇ ∇ ≤ ∇ + + + +∫ 

β

β ασε εε ϕ ε ασ εασ
ασ

(38)

Next, we deal with I2 in eq. (28). By the properties in Lemma 1, we have:
2 2 2( ( ) )( )t tu u u u v C v C C Cρϕ φ ρ ϕ ϕ ϕ φ α ασ⋅∇ − ∂ + ⋅∇ − ∂ − ≤ − + + +∫ (39)
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For the term ∫ρū ⋅ ∇φ(v – φ), we see that:
2

2

1( ) ( )
2

1 div( ) : [( ( )]
2

:[ ( )]

:

u v u u u u

u u u u

C u u u u

C u u C u u

ρ ϕ ϕ ρ ϕ ρ ϕ

ϕ ρ ϕ ρ

ασ ϕ ρ ρ ρ

ασ ρ ϕ ασ ρ ϕ

⋅∇ − = − ⋅∇ + ⋅∇ −

≤ − ⊗ ∇ −

≤ − ⊗ ∇ + ∇ −∇

≤ − ⊗ ∇ ≤ − ⋅∇

∫ ∫ ∫

∫ ∫
∫
∫ ∫

(40)

Using the basic energy inequality, we can arrive:
0u u C≤ ≤ (41)

Hence, combination of this inequality and eq. (40) implies:
( )u v Cρ ϕ ϕ ασ∇ − ≤∫ (42)

Then it follows from eqs. (39)-(42) that:
2 2 2

2I C v C C Cϕ φ α ασ≤ − + + + (43)
Now from eqs. (28), (38), and (43), we see that:

2 2 2 2

1/ 2 /
( )

d
d

( ) er
r C

L

v C v C C C
t

CCM C w C
β

β ασ
Γ

ϕ ϕ φ α ασ

εε ασ εασ
ασ

− −

− ≤ − + + + +

+ + + +

(44)

At last, from eq. (14)1, we can rewrite it:
( ) 0t v uφ ϕ ρ φ ϕ ρ+ − ⋅∇ + ⋅∇ + ⋅∇ = (45)

Then, computing ∫(45) ⋅ ϕ, we have:
2 2 21 d

2 d
C v C

t
φ φ ϕ ασ≤ + − + (46)

therefore by eqs. (44) and (46), we obtain that:

( ) ( )2 2 2 2 2

1/ 2 /
( )

d
d

( ) er
r C

L

v C v C C CM
t

CC w C
β

β ασ
Γ

φ ϕ ϕ φ α ασ

εε ασ εασ
ασ

− −

+ − ≤ − + + + + +

+ + +

(47)

Choose α = εγ, γ ∈ (0, 1):
1ln

2C M
εσβ

σ
 =  
 

(48)

Then from eq. (47), we have:

( ) ( )2 2 2 2d ( )
d

v C v CN CM
t

φ ϕ ϕ φ ε+ − ≤ − + + + (49)

where N(ε) → 0 as ε → 0. By the Gronwall inequality, we get:
2 2 2 2 2

0

( ) ( ) ( )d
t

CTv v CN CTe N T M s sφ φ ϕ ϕ ε σ ε+ ≤ + +


−





+ ≤ +


∫ (50)

This completes the proof.
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Conclusion

In this paper, the convergence in L2 norm, uniformly in time of the inhomogeneous 
Navier Stokes system and inhomogeneous Euler equations are discussed. More precisely, with 
the assumption of the Oleynick conditions of no back-flow in the trace of the Euler flow, and of 
a lower bound for the Navier-Stokes vorticity in a Kato-like boundary-layer, the inviscid limit 
holds when the viscosity parameters go to zero and the rate of convergence is also given.
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Nomenclature
P, P̄		  – pressure, [Nm–2]
u = (u1 – u2) 	– velocity, [ms–1]
ū  = (ū1 – ū2) – velocity, [ms–1]

Greek symbols

Γ	 – boundary of Ω, [m]
ρ, ρ̄  	– density, [kgm–3]
Ω 	 – domain, [m2]
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