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Assessing energy performance indicators is important for understanding EU 

countries' progress toward achieving sustainability and climate goals, 

including reducing greenhouse gas emissions and increasing the share of 

renewable energy. This paper employs two-step cluster analysis (TSCA) 

using IBM SPSS 26.0 to classify EU member states based on six key energy 

indicators. The optimal number of clusters was determined using Schwarz's 

Bayesian Information Criterion (BIC), ensuring statistical robustness. Four 

distinct clusters were identified, revealing varying strengths and weaknesses. 

These insights provide important guidance for policymakers, enabling the 

development of targeted strategies for improving energy efficiency and 

sustainability across the EU. 
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1. Introduction 

Monitoring and comparing the energy performance of EU countries is necessary to understand 

the progress made to meet the renewable energy and climate goals. The EU has set ambitious targets 

under its climate and energy frameworks, such as the goal of achieving a 32% share of renewable 

energy by 2030 and reducing greenhouse gas emissions by at least 55% by 2030, compared to 1990 

levels [1,2]. These targets are part of the broader European Green Deal, which aims to make Europe 

the first climate-neutral continent by 2050. Energy performance indicators provide a quantifiable 

means of assessing how close EU countries are to achieving these objectives. Several indicators, such 

as primary energy consumption, energy productivity, and the share of renewable energy in transport, 

electricity, and heating, are regularly tracked by the EU and its member states through Eurostat [3]. 

Primary energy consumption reflects the total energy demand, while energy productivity measures the 

economic output per unit of energy consumed. The renewable energy indicators track the adoption of 

cleaner energy sources in industry sectors. These indicators are important for determining progress and 

ensuring that countries contribute equitably to the EU’s collective climate targets. Despite common 

goals, there are significant variations in how EU member states perform across these indicators. 

Sweden and Denmark have already surpassed the 32% renewable energy target, largely due to their 

early investments in wind and biomass energy, whereas countries such as Luxembourg and Ireland are 

still far behind [3,4].  
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Clustering EU countries based on energy performance is significant to both policymakers and 

stakeholders. To identify the groups of countries with similar energy performance profiles, it becomes 

possible to design more targeted and effective energy policies. For instance, countries that lag in 

renewable energy adoption but have high energy consumption might benefit from policies that 

encourage renewable energy technologies, while those that already outperform in energy productivity 

may require strategies focused on maintaining energy efficiency [5]. But also, clustering allows 

policymakers to recognize best practices from high-performing clusters and encourage their adoption 

in lower-performing ones. Countries with high shares of renewable energy in electricity production, 

such as Portugal and Finland, can provide models for those relying heavily on fossil fuels for 

electricity generation [5-7]. This approach can encourage regional cooperation and transfer 

technologies among EU member states, with the alignment of national policies more closely with EU-

wide climate objectives. 

The primary aim of this paper is to group the EU member states into clusters based on six key 

energy performance indicators: primary energy consumption, energy productivity, renewable energy 

in transport, renewable energy in electricity, and renewable energy in heating and cooling. These 

indicators have been chosen for their relevance to the EU's overarching energy and climate goals and 

their ability to provide a view of each country’s energy landscape. To achieve this objective, a two-

step cluster analysis will be performed using IBM SPSS 26.0. This hybrid clustering technique is 

customized for the study because it can handle both continuous and categorical variables and 

automatically determine the optimal number of clusters using statistical criteria such as Schwarz's 

Bayesian Information Criterion – BIC [8]. The aim is to identify distinct clusters of EU member states 

that share similar characteristics in terms of their energy performance, allowing for a more structured 

comparison and policy evaluation. 

2. Literature review 

The energy performance indicators include primary energy consumption, energy productivity, 

and the share of renewable energy in transport, electricity, and heating/cooling. Each of these 

indicators is important in assessing the energy efficiency, sustainability, and overall energy transition 

of EU member states. Primary energy consumption refers to the total energy demand required to meet 

a country’s energy needs, including production, transformation, and delivery losses [3,9,10]. It is an 

important metric for understanding the overall energy efficiency of a country, and it is directly linked 

to the EU's energy efficiency targets. Significant studies have examined the trends in primary energy 

consumption across the EU. The research found that between 2010 and 2019, primary energy 

consumption decreased by approximately 10% in the EU, which indicates efforts to decouple 

economic growth from energy use [11]. However, significant disparities exist between member states. 

Countries such as Germany and France account for a large proportion of the EU's primary energy 

consumption, while smaller nations like Malta and Cyprus contribute far less [3]. Research shows that 

many EU countries have managed to reduce their primary energy consumption through increased 

energy efficiency measures. The European Commission reports that countries such as Denmark and 

the Netherlands have implemented strong energy-saving policies, which have led to significant 

reductions in consumption [12]. However, the report also highlights those other countries, particularly 

in Eastern Europe, have struggled to meet the EU's targets for reducing primary energy consumption 

due to economic and infrastructural challenges [5]. Energy productivity is another important indicator, 
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measuring the economic output generated per unit of energy consumed. High energy productivity 

indicates that a country is using energy efficiently to drive economic growth. In 2020, the average 

energy productivity in the EU was 8.0 euros per kilogram of oil equivalent, which is a significant 

improvement from previous years [3,13]. Studies show that countries such as Ireland, Denmark, and 

Luxembourg lead the EU in energy productivity, largely due to their service-based economies and 

lower reliance on energy-intensive industries [14]. On the other hand, Eastern European countries such 

as Poland and Bulgaria have lower energy productivity, which is partly due to their dependence on 

heavy industry and coal-based energy generation [5,15]. According to the European Environment 

Agency improvements in energy productivity will be important for meeting the EU’s goal of reducing 

greenhouse gas emissions by 55% by 2030.  

The third set of important critical indicators includes the share of renewable energy in three 

sectors: transport, electricity, and heating/cooling. The EU has set targets for increasing the share of 

renewable energy in these sectors as part of its Renewable Energy Directive. According to [3], the 

share of renewable energy in the EU’s gross final energy consumption reached 22.1% in 2020, 

surpassing the 2020 target of 20%. However, the adoption of renewable energy varies significantly 

across sectors and member states. In the transport sector, the EU aims to achieve a 14% share of 

renewable energy by 2030. Currently, biofuels and renewable electricity are the main sources of 

renewable energy in transport. The share of renewable energy in transport across the EU stood at 

10.2% in 2020, a slight improvement from previous years [3]. Countries such as Sweden, Finland, and 

the Netherlands are leading in renewable energy use for transport, thanks to their early investments in 

biofuels and electric vehicle infrastructure [5]. Conversely, countries like Hungary and Poland lag 

behind, due to their slower adoption of alternative fuels and electric mobility [5]. The electricity sector 

has seen the largest growth in the use of renewable energy. In 2020, renewable energy sources, 

including wind, solar, hydro, and biomass, account for 37.5% of the EU’s electricity generation [3]. 

Several clustering techniques have been applied in energy performance analysis, including K-means, 

hierarchical clustering, and latent class analysis. K-means clustering is used due to its efficiency in 

handling large datasets; however, it assumes spherical cluster structures and requires the number of 

clusters to be predefined, which limits flexibility in exploratory studies [16]. Hierarchical clustering 

provides a detailed hierarchical structure but suffers from computational inefficiencies and sensitivity 

to outliers, making it unsuitable for large datasets with mixed data types [9,17]. Latent class analysis is 

another probabilistic approach but primarily focuses on categorical variables, limiting its application 

in datasets containing continuous energy indicators [18,19]. To address these limitations, two-step 

cluster analysis was chosen as it automatically determines the optimal number of clusters using 

Schwarz’s Bayesian Criterion (BIC), reducing arbitrary cluster selection bias and also handles both 

continuous and categorical variables. In addition to clustering, multi-criteria decision-making 

(MCDM) methods are important for ranking energy performance among countries. Common MCDM 

approaches include Analytic Hierarchy Process (AHP), a structured technique for ranking criteria, but 

it requires extensive pairwise comparisons, making it impractical for large datasets [13]. Two-step 

cluster analysis represents a hybrid method that combines the strengths of both distance-based 

clustering and probabilistic modeling. The technique is used in cases when dealing with large datasets 

that include both continuous and categorical variables. Two-step cluster analysis has been used in 

energy research to study energy efficiency, renewable energy adoption, and greenhouse gas emissions. 

According to a study [19] two-step cluster analysis was used to categorize countries based on their 
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energy efficiency performance and renewable energy use. The results showed clear differences 

between clusters of countries, with some clusters performing well in terms of renewable energy 

adoption but poorly in energy efficiency, and vice versa. One of the main advantages of two-step 

cluster analysis over K-means and hierarchical clustering is its ability to handle both categorical and 

continuous variables simultaneously. This makes it suitable for complex energy data, where variables 

such as energy consumption, renewable energy shares, and energy prices must all be considered. For 

instance, an analysis [20] used a two-step cluster analysis to examine energy-saving behaviors among 

EU households. The study found that households could be grouped into distinct clusters based on their 

energy consumption patterns and attitudes toward energy-saving technologies, helping to inform 

targeted policy interventions. 

Despite the use of clustering techniques in energy studies, existing research often focuses on 

either energy consumption patterns or renewable energy adoption in isolation. For example, K-means 

and hierarchical clustering have been used to group countries based on a single dimension, such as 

energy efficiency or renewable energy use. However, there is limited research that integrates multiple 

energy performance indicators, such as primary energy consumption, energy productivity, and 

renewable energy shares, into a unified analysis. This paper addresses this gap by applying two-step 

cluster analysis to examine a more complex set of indicators, to provide deeper insights into how EU 

member states compare across different dimensions of energy performance. The presented findings 

contribute to both policy development and academic understanding by identifying distinct clusters that 

reflect the complex interconnection between energy consumption, efficiency, and renewable energy 

adoption. 

3. Methodology 

The methodological framework is grounded on the five indicators that reflect the most recent 

data for the energy performance indicators of the members of the European Union make up the data 

set used in the current research. The dataset presented above is based on the most recent information 

available from the Eurostat database.  

It is important to highlight that energy systems involve interdependent indicators such as 

primary energy consumption, energy productivity, and the share of renewable energy in different 

sectors. These indicators encompass both continuous variables (e.g., energy productivity measured in 

GDP per unit of energy) and categorical variables (e.g., classification of countries based on their 

renewable energy policies). Traditional clustering techniques, such as K-means and hierarchical 

clustering, struggle to handle both types of data effectively. Two-step cluster analysis (TSCA) offers 

an alternative by handling mixed data types. Unlike K-means clustering, which only supports 

continuous variables, TSCA can process both continuous (e.g., primary energy consumption) and 

categorical variables (e.g., whether a country has a high renewable energy policy commitment). But 

also the automatic selection of the optimal number of clusters. Hierarchical clustering methods require 

prior knowledge of the number of clusters, whereas TSCA determines the optimal number using the 

Schwarz Bayesian Criterion (SBC/BIC) and the Akaike Information Criterion (AIC), minimizing 

overfitting. The two-step cluster analysis follows the clustering optimization framework: 

    argmin∑ ∑ 𝑑(𝑥, 𝜇௜)
ଶ + 𝜆𝑓(𝑘)௫∈஼೔

௞
௜ୀଵ       (1) 
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Where: 𝐶 = {𝐶ଵ, 𝐶ଶ, … , 𝐶௞} represents the set of clusters, 𝑑(𝑥, 𝜇௜) is the distance function 

measuring similarity between data points and cluster centroids, 𝜆𝑓(𝑘) is a penalization term 

controlling for model complexity, regulated by BIC/AIC criteria. 

Energy performance indicators presents nonlinear relationships and trade-offs. TSCA captures 

these dynamics through energy transition trade-offs. Countries with high energy consumption may 

belong to clusters with high GDP per capita, while countries with strong renewable energy shares may 

be grouped based on policy incentives rather than energy intensity alone. By considering multiple 

indicators simultaneously, TSCA prevents misleading conclusions from single-variable clustering 

approaches. 

Using IBM SPSS 26.0, a two-step cluster analysis will be used to group the EU members. Using 

hierarchical techniques such as the agglomerative approach, two-step cluster analysis forms 

subclusters. The hybrid approach known as Two-Step cluster analysis first divides groups using a 

distance measure and then selects the best subgroup model using a probabilistic approach akin to 

latent class analysis [8]. The following indicators' energy performance indicator values are shown in 

Fig. 1 respectively, based on the findings of the descriptive statistics: Energy productivity, Primary 

energy consumption, Renewable energy in transport, Renewable energy sources in electricity, and 

Renewable energy sources in heating and cooling.  

 

Figure 1. Descriptive statistics for analyzed indicators 

In addition to the aforementioned cluster analysis, the paper will also rank the countries using 

the PROMETHEE method for multi-criteria decision-making using a modern software package 

(Visual PROMETHEE Academic) This part of the methodological framework should make it possible 

to see the leaders in the field of energy performance outside the created clusters. Energy performance 

indicators often involve a set of diverse and conflicting criteria, where PROMETHEE allows decision-

makers to evaluate and compare multiple criteria simultaneously, facilitating a more holistic and 

comprehensive ranking of alternatives, provides a balanced view of alternatives. One of the key 

strengths of PROMETHEE is its ability to incorporate different types of preference functions and 

flexibility, which allows it to handle various types of data associated with energy performance 

indicators. The decision maker in this analysis chooses a preference function for each criterion Ri, 
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which is why a fuzzy preference relation is formed where Si (a,b) implies preferences of intensity a in 

relation to preference b:  

   𝑆௜: 𝐴𝑥𝐴 → [0,1]; 𝑆௜(𝑎, 𝑏) = 𝑃௜൫𝑓௜(𝑎) − 𝑓௜(𝑏)൯ = 𝑃௜(𝑑)    (2) 

Outranking PROMETHEE concept is valuable in energy performance evaluation ranking 

alternatives according to their abilities being better or worse in certain aspects. Clear ranking and 

identifying possible discrepancies in energy- related decisions promote PROMETHEE as a crucial 

energy performances MCDM method especially in conducting analysis under different assumptions. 
By combining these analyses, it is possible to determine a benchmark in the area of energy 

performance of member countries and, based on that, determine guidelines for further improvement 

and development. The method used to determine the number of clusters is summed up in the Auto-

clustering table. For each possible number of clusters, the clustering criteria are calculated. The 

Schwarz Bayesian Criterion (SBC), also known as the Bayesian Information Criterion (BIC), is a 

criterion used to assess the goodness of fit of a statistical model while accounting for its complexity. In 

the context of two-step cluster analysis, it is used to determine the optimal number of clusters. Smaller 

BIC values indicate better models, while in this case, the "best" cluster solution has the least BIC. A 

big ratio of distance measures and a moderately large ratio of BIC changes are characteristics of a 

successful solution. The authors assign the number of clusters automatically. As a result, 4 is the ideal 

number of clusters, since this cluster solution has the lowest Swarz's Bayesian Criterion value and the 

largest Ratio of Distance Measures value (Table 1). 

 

Table 1. The ratio of distance measures and the lowest value of Swarz’s Bayesian Criterion 

Number of Clusters 

Schwarz's 

Bayesian 

Criterion (BIC) 

BIC Changea 
Ratio of BIC 

Changesb 

Ratio of Distance 

Measuresc 

1 387,67    

2 453,54 65,86 1,00 1,48 

3 536,69 83,15 1,26 1,53 

4 632,17 95,47 1,45 1,09 

5 729,68 97,51 1,48 1,27 

6 831,79 102,11 1,55 1,11 

7 935,59 103,79 1,57 1,19 

8 1041,79 106,20 1,61 1,39 

9 1151,48 109,69 1,66 1,07 

10 1261,78 110,29 1,67 1,17 

a. The changes are from the previous number of clusters in the table. 

b. The ratios of changes are relative to the change for the two cluster solutions. 

c. The ratios of distance measures are based on the current number of clusters against the previous number of clusters. 

 

4. Results and discussion 

The validity of the cluster analysis and the set model was proven through the Silhouette measure 

of cohesion and separation which is over 0.5 which is very good. Descriptive statistics between 

clusters, especially the mean value of the analyzed indicators, have been used to demonstrate the 



7 

 

conditions in the energy performance clusters of the EU members. Therefore, the second cluster has 

the highest mean value for Primary energy consumption while the third cluster has the highest value 

for the three indicators: Renewable energy in transport, Renewable energy sources in electricity, and 

Renewable energy sources in heating and cooling (Table 2). 

 

Table 2. Descriptive statistics among clusters 

 

Primary 

energy 

consumption 

Energy 

productivity 

Renewable energy 

in transport 

Renewable energy 

sources in 

electricity 

Renewable 

energy sources 

in heating and 

cooling 

Mean Stdev. Mean Stdev. Mean Stdev. Mean Stdev. Mean Stdev. 

C
lu

st
er

 

86,68 3,51 6,98 2,06 8,74 1,15 32,76 14,14 21,78 6,97 

101,90 6,88 5,22 2,62 7,78 1,95 17,08 4,95 33,48 8,25 

88,53 5,78 6,47 1,98 11,44 10,49 49,27 20,71 57,18 11,52 

82,00 8,02 13,10 5,95 8,58 2,29 45,81 20,87 26,00 15,15 

 

Fig. 2 depicts the cluster structure and number of countries as well as cluster size and 

dominance. The most significant cluster share and size has the fourth cluster 33,3% with nine 

countries. Lithuania, Latvia, Estonia, Croatia, Finland and Sweden has the lower cluster share but the 

mean of the Renewable energy in transport, Renewable energy sources in electricity, and Renewable 

energy sources in heating and cooling indicators is the highest one. The results of the two-step cluster 

analysis revealed significant insights into the energy performance of EU member states. The identified 

clusters highlight varying strengths and weaknesses among countries, with some clusters excelling in 

renewable energy adoption while others demonstrate higher levels of primary energy consumption. 

The clear distinction in the mean values of the indicators across clusters indicates that different policy 

strategies are needed to address these disparities. These results demonstrate the uneven progress 

toward EU energy targets, highlighting the need for customized policy measures to address each 

cluster's specific strengths and weaknesses.  
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Figure 2. Cluster structure 

The findings contribute to more informed decision-making in the development of energy 

policies, with the focus on how to balance consumption, productivity, and renewable energy transition 

across the EU. The second part of the implemented methodology relates to multi-criteria decision-

making output. The first most significant decision- making output is GAIA analysis, a statistical 

method used in Visual PROMETHEE Academic, categorizes alternatives into small clusters based on 

the dominant criteria for each alternative's data. The effectiveness of this analysis depends on the 

quality of the model, which is determined by selecting appropriate criteria and options for ranking 

[21]. If the model's quality exceeds 60%, it can be considered to address the relevant questions 

adequately. In the example of the EU27 ranking, the model quality is 67.5% (Fig. 4). In the context of 

multi-criteria decision-making for energy performances, distinct groups or clusters of alternatives 

emerge. The first cluster, located in the first quadrant (quadrants in the matrix are numbered 

counterclockwise), includes Lithuania, Slovenia, Croatia, and others, which stand out due to factors 

such as Primary energy consumption and Renewable energy sources in heating and cooling. 

Alternatives like Bulgaria and Malta are identified in the fourth quadrant, while Hungary for example 

is positioned in the fourth quadrant, without clearly belonging to any specific group. The significant 

distance between Slovenia and Romania from the groups and their position near the coordinate origin 
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suggests that their energy performances are not at an adequate level. Sweden, Finland, Denmark, 

Austria, and Portugal, located in the second quadrant have the leading position for analyzed indicators 

especially for Renewable energy sources in electricity and Renewable energy in transport marked by 

“bold- black stick”. 

 
Figure 4. GAIA 

*X1-Primary energy consumption; X2- Energy productivity; X3- Renewable energy sources in electricity; X4- Renewable 

energy in transport; X5- Renewable energy sources in heating and cooling. 

  

PROMETHEE network view depicts the most significant conjunctures between EU members 

according to Phi coefficient. In PROMETHEE, the Phi coefficient is typically used in the flow model 

to express the overall performance of each alternative. The flow model is designed to give a 

preference ranking to each alternative based on how it performs concerning the other alternatives 

across various criteria. The idea is to calculate the positive flow (how much an alternative is preferred 

over others) and the negative flow (how much it is less preferred). These flows are then combined into 

a single score for each alternative, and the alternatives are ranked based on this score. Based on this, it 

can be concluded that Sweden and Denmark especially stand out as optimal alternatives (Fig. 5). 

Sweden has the highest positive Phi coefficient.The Phi coefficient essentially quantifies the net 

preference an alternative has over other alternatives. It is a value between -1 and 1, where the value 

close to 1 means the alternative is strongly preferred compared to others.  

 

     𝜑 = 𝜑ା − 𝜑ି       (3) 

Where 𝜑ା is positive and 𝜑ି is negative flow and the 𝜑 is overall Phi coefficient. 

A result of 0.82 for the Phi coefficient signifies that the alternative in question is highly 

preferred, suggesting that it is a strong contender in the decision-making process and outperforms 

most of the other alternatives based on the criteria considered. This can guide decision-makers toward 

making a final choice with confidence. In decision-making, a Phi of 0.82 represents a clear winner in 
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terms of overall desirability based on the weighted criteria considered in the analysis, promoting 

Sweden as a favorable benchmark in energy performance evaluation.  

 
Figure 5. PROMETHEE network view 

Additionally, the "spider" diagrams depict the countries' leaders in the analyzed area. A positive 

orientation is present for the majority of energy performance indicators. 

Figure 6. Spider charts for energy performance leaders among EU members 
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The analysis identified four distinct clusters of EU member states, each with unique energy 

performance characteristics. Cluster 2 showed the highest primary energy consumption, with a mean 

of 101.90 units, while Cluster 3 led in renewable energy adoption, particularly in transport (11.44%), 

electricity (49.27%), and heating and cooling (57.18%). These findings show the diverse energy 

profiles within the EU, with some countries excelling in renewable energy while others lag in 

consumption efficiency. This clustering offers policymakers valuable insights into designing targeted 

energy strategies. Countries in Cluster 2, for example, could benefit from policies that prioritize 

reducing energy consumption, whereas Cluster 3 countries might focus on maintaining their renewable 

energy advancements. Policymakers can use these profiles to set differentiated energy targets that 

reflect each cluster's specific needs and capabilities, facilitating more efficient resource allocation. 

However, the study has limitations. The analysis relies solely on the latest available Eurostat data, 

making it a real-time snapshot rather than reflecting long-term trends. Additionally, the study does not 

account for socio-economic factors that may influence energy performance, such as economic growth 

rates or industrial structures, which could further refine the clustering.  

In recent years, Sweden, Denmark, Finland, and Austria have made notable progress in 

improving their energy performance, particularly in advancing renewable energy. Their efforts have 

not only supported their own national energy objectives but also influenced the European Union's 

renewable energy policies. Sweden has become a leader in renewable energy in Europe, with nearly 

60% of its energy derived from renewable sources such as hydropower, wind, and biomass. The 

country's commitment to reducing carbon emissions and phasing out fossil fuels has had a substantial 

impact on the EU’s climate goals. Sweden aims to achieve net-zero emissions by 2045 and advocates 

for more ambitious EU-wide renewable energy targets. Denmark, known for its bold wind energy 

strategy, has become a global leader in wind turbine production and offshore wind energy. Wind 

power now accounts for around 50% of Denmark’s electricity consumption, and the country aims to 

achieve fossil fuel independence by 2050. Denmark’s successful integration of wind energy into its 

grid has served as a model for the EU, promoting further investments in offshore wind as part of the 

Green Deal. Denmark has also played a key role in pushing for stronger renewable energy targets and 

energy efficiency measures within the EU.  Finland has made significant progress in diversifying its 

energy mix by increasing its use of bioenergy, wind, and solar power. The country plans to phase out 

coal by 2030 and increase its renewable energy share. Finland’s sustainability efforts align with the 

EU's renewable energy directives, and its focus on bioenergy and forest-based solutions has influenced 

EU policies on sustainable biomass use and carbon-neutral solutions. Austria has been highly 

successful in integrating renewable energy, especially hydropower and biomass, into its energy 

system. Over 70% of Austria's electricity is generated from renewable sources, and the country has 

committed to achieving carbon neutrality by 2040. Austria has been an active advocate for stronger 

EU climate policies, including increased funding for renewable energy technologies and carbon 

pricing. Its emphasis on hydropower and renewable heating systems has contributed to EU strategies 

for sustainable energy production and energy efficiency. 

5. Conclusion 

This study applied a two-step cluster analysis to classify EU member states based on key energy 

performance indicators. The results revealed four distinct clusters, demonstrating differences in 

primary energy consumption, energy productivity, and renewable energy adoption. Countries in 
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Cluster 3 excelled in renewable energy integration, while Cluster 2 had the highest energy 

consumption, highlighting the need for tailored energy transition strategies. The insights gained from 

this clustering analysis provide recommendations for countries with lower energy efficiency and 

renewable energy adoption, such as Serbia and Bosnia and Herzegovina. These nations, which face 

challenges in transitioning away from fossil fuels, can use best practices from higher-performing EU 

member states, particularly those in Cluster 3, which have successfully integrated renewable energy 

into their national grids. 

The clustering insights provide valuable guidance for policymakers by identifying countries that 

require targeted energy transition policies. High energy-consuming countries should prioritize 

efficiency improvements and investment in renewables, while nations with advanced renewable 

adoption can serve as models for technology and policy diffusion. Aligning national policies with EU 

energy transition goals is essential for achieving the Green Deal objectives. Future research should 

extend this clustering approach by incorporating socio-economic and industrial indicators to refine 

energy transition strategies. Additionally, applying this methodology over multiple years would help 

track progress toward EU climate goals and identify emerging trends in energy efficiency and 

sustainability. 
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