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The Dengsi formation in the Gaoshiti-Moxi block of the Sichuan Basin is charac-
terized as having low porosity and low permeability. Typically, the development 
is carried out using horizontal wells and segmented acid fracturing techniques. 
In this study, based on a data-driven approach, geological, engineering, and well 
testing data were collected from 22 horizontal wells in the study area. Then, a high 
precision acid fracturing productivity model was established using Gaussian pro-
cess regression. This model exhibited a high level of prediction accuracy, with an 
average relative error of only 8.77% for the test dataset. Furthermore, leveraging 
the established productivity model and employing a particle swarm optimization 
algorithm, research was conducted to optimize acid fracturing parameters and 
predict well productivity. The practical application of this approach in one well 
yielded favorable results, which hold promise for providing guidance on segment-
ed acid fracturing design in the study area. 
Key words: carbonate gas reservoirs, horizontal wells, acidizing,  

productivity evaluation, data-driven

Introduction

The Upper Permian Dengying Formation, Deng 4th Member carbonate gas reservoir 
in the Gaoshiti-Moxi area of the Sichuan Basin is characterized by deep burial and high tem-
peratures. Additionally, the average reservoir porosity is 3.22%, and permeability ranges from  
0.01-10 mD, making it a low porosity, low permeability reservoir [1]. Development mainly 
relies on horizontal wells and segmented acidizing techniques [2]. The Deng 4th Member car-
bonate gas reservoir exhibits strong heterogeneity, resulting in significant variations in well 
productivity [3]. Targeted acidizing modifications are required to effectively utilize the reserves 
and enhance single-well development performance [4, 5]. Acidizing effectiveness is primarily 
influenced by geological and engineering parameters, including reservoir permeability, porosi-
ty, water saturation, acid volume, and injection rate.
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Common acidizing effectiveness prediction methods include analytical models and 
numerical simulations [6]. However, analytical models require artificial assumptions such as 
constant temperature and Newtonian fluids, which may deviate significantly from actual condi-
tions [7, 8]. Numerical simulation methods demand high accuracy in input data, as errors in the 
data can lead to substantial calculation inaccuracies. Furthermore, there is no mature method 
for accurately identifying and characterizing underground fracture networks. Consequently, ac-
curately predicting acidizing effectiveness is highly challenging.

Currently, data-driven methods without the need for physical modelling have sparked 
revolutionary changes in various fields such as finance, medicine, and security. Therefore, this 
study, based on a data-driven approach, utilizes machine learning algorithms in combination 
with geological, engineering, and well testing data from previous acidizing wells to conduct 
productivity evaluations for acidizing wells. It also investigates the impact of geological and 
engineering parameters on the acidizing effectiveness of individual wells, aiming to optimize 
acidizing construction parameters and guide acidizing design.

Methodology

Productivity evaluation falls under the category of regression problems in machine 
learning, which involves using algorithms to learn patterns from geological, engineering, and 
production data and using those patterns to predict yields. The machine learning method cho-
sen for this study is Gaussian process regression (GPR). It is a non-parametric Bayesian re-
gression approach suitable for small-sample, multidimensional non-linear regression problems 
[9]. Compared to neural networks and support vector machines, GPR is easier to implement, 
offers flexible hyperparameter usage, and thus exhibits higher adaptability and generalization 
capabilities. It finds widespread applications in various fields, including reservoir engineering, 
electrical engineering, and spectroscopy.

Based on GPR, the acidizing productivity model is given [9]:
( )T Ty f ε= +x (1)

where x is the input vector and εT – the corresponds to Gaussian noise. Here, yT follows a Gauss-
ian distribution [9]:
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where σ2
n is the variance of the noise, In – the n-order identity matrix, and n – the number of sam-

ples in the training set. Here, K is the covariance matrix composed of the squared exponential 
covariance kernel function k [9]:
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where xi and xj are the correspond to the ith and jth input vectors in the training set, respectively, σ2
h 

– the signal variance of the squared exponential kernel function k(xi, xj), and ι – the characteristic 
length scale of the kernel function k(xi, xj). Let θ = (σ2
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h, ι) be the hyperparameters in the Gauss-

ian process regression model. Based on the negative log-likelihood function L(θ) of the training 
samples, these hyperparameters can be determined using the conjugate gradient method [9]:
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where M is the intermediate variable and YT – the normalized acidizing productivity vector 
corresponding to the training set. For an individual test sample, its corresponding input vector 
is x*, which represents the standardized geological and engineering parameters. The output y* 
corresponding to x* also follows a joint Gaussian distribution with Y [9]. There is:
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where Y corresponds to the outputs of the training set. Therefore, the predicted value of the 
normalized acidizing productivit y ̄*T can be represented as [9]:
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where the reverse normalization will yield the corresponding actual value.
Optimizing acidizing construction parameters involves adjusting these parameters to 

maximize post-treatment productivity. This study utilizes a particle swarm algorithm to opti-
mize acidizing construction parameters. The particle swarm algorithm is a typical intelligent 
optimization method, which simulates the foraging behavior of birds to find the best solution. 
The optimization of acidizing construction parameters using the particle swarm algorithm is a 
process of seeking extremum. The basic operation process is as: Given geological parameters 
and constraints, based on a well-trained model FM(x), the particle swarm algorithm is employed 
to find the maximum value of FM(x). Specifically, for each well, considering the corresponding 
geological parameters and in conjunction with on-site construction capabilities, the objective 
is to maximize post-treatment productivity. The particle swarm algorithm is used to find the 
acidizing construction parameters that correspond to the maximum value of FM(x) under these 
conditions.

Data and model development

Regarding the Deng 4th Member of the Dengying Formation in the Gaoshiti-Moxi area 
of the Sichuan Basin, based on the criteria of ease of collection, quantifiability, and comprehen-
siveness, geological and engineering parameters, as well as production data, were collected from 
22 horizontal wells. Geological parameters included: porosity, permeability, water saturation, the 
proportion of Type I + II reservoirs, the proportion of Type III reservoirs, and the proportion of 
non-reservoir segments in the acidized wells. Engineering parameters comprised acid strength 
and injection rate for the acidized wells. The production data were represented as the equivalent 
test production per kilometer of acidized well. To mitigate the impact of correlations between 
variables, reduce input parameter redundancy, ease model training, and enhance model interpret-
ability, following prior research, certain parameters were preprocessed as:
 – Acid strength = Acid volume/length of the acidized well segment, no longer using acid 

volume. 
 – Proportion of Type I + II reservoirs = Thickness of Type I + II reservoirs/length of the acid-

ized well segment, no longer using thickness of Type I + II reservoirs. 
 – Proportion of Type III reservoirs = Thickness of Type III reservoirs/length of the acidized 

well segment, no longer using thickness of Type III reservoirs. 
 – Proportion of non-reservoir segments = Thickness of non-reservoir segments/length of the 

acidized well segment, no longer using thickness of non-reservoir segments. 
 – Production per kilometer = Test production of acidized well/length of the acidized well seg-

ment × 1000 m, no longer using test production of acidized well. 
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 – The length of the acidized well segment is no longer used the part of the collected geological 
and engineering data are presented using box plots, as shown in figs. 1 and 2.

Figure 1. Box plot corresponding to geological data;  
(a) porosity, (b) bermeability, and (c) water saturation

 
Figure 2. Box plot corresponding to engineering and production data;  
(a) acid volume per meter and (b) pumping flow rate

Using Gaussian process regression, an acidizing productivity model was established, 
which represents the relationship between geological and engineering parameters, xi, and the 
data of test production per hundred meters, y, i.e., y = FM (x1, x2, x3,…, xn). During the mod-
elling process, the collected data were split into a training set and a test set in an 8 : 2 ra-
tio. Thus, 18 acidized wells were used for model training, and four acidized wells were used 
for model testing. During the model training process, the optimized hyperparameters were  
σn = 1.06 ⋅ 10–4, σh = 0.2502, and ι = 1. The model training and test results are shown in fig. 3. 
Figure 3 displays that, for both the training and test sets, the model results align closely with the 
actual test production, with most data points falling within the ±15% error range. For the train-
ing set, the model’s average relative error is 0.03%, while for the test set, the model’s average 
relative error is 8.77%.

Field application

The MX131 is a horizontal well with a maximum deviation angle of 91.45°, drilled to 
the Deng 4th member in the Gaoshiti-Moxi area. The total depth of the well is 6310.0 m, with a 
vertical depth of 5323.82 m. The logging interpretation identified a total of 15 intervals, includ-
ing 5 gas-bearing intervals and 10 non-gas-bearing intervals. Among the gas-bearing intervals, 
there were no Type I reservoirs, with a Type II reservoir having an average porosity of 7.09% 
and a length of 10.25 m. The Type III reservoir had an average porosity of 3.21% and a length 
of 562.63 m. To enhance reservoir communication, increase reservoir utilization, and ultimately 
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boost single-well productivity, a self-generated acid pre-flush followed by gelled acid acidizing 
process was designed, along with segmented open-hole packers for targeted reformation. Utiliz-
ing the geological and engineering parameters of the well, the acidizing production model was 
applied with the objective of maximizing post-treatment productivity, and the particle swarm 
algorithm was used to optimize the average acid injection rate and acid strength for the acidizing 
wells, while considering on-site construction capabilities. The upper limits for the injection rate 
and acid strength were set at 10 m3 per minute and 2 m3 per minute, respectively. The optimiza-
tion process is shown in fig. 4. The results of the optimization indicated an injection rate of 8 m3 
per minute and an acid strength of 1.6 m3/m, corresponding to a production rate of 68.42 ⋅ 104 m3 
per day per kilometer. Based on the optimization results, the designed injection rate was 8 m3 per 
minute, and the designed acid strength was 1.6 m3 per minute. After acidizing, MX131 achieved 
a test production rate of 60.61 ⋅ 104 m3 per day per kilometer, resulting in a notable production 
increase. This value was close to the model’s predicted value, validating the reliability of the 
model.

                 Figure 3. Model results vs. real data    Figure 4. Values of the objective function  
       during iterations

Conclusion

Based on a data-driven approach, a Gaussian process regression model was estab-
lished for segmented acidized wells to depict the relationship between geological and engi-
neering parameters and test production per kilometer. This model exhibits high accuracy, with 
an average relative error of only 8.77% for the test dataset. Using the established acidizing 
productivity model, in combination with the particle swarm algorithm, the acidizing production 
enhancement plan for well MX131 was optimized. The results demonstrate that the computed 
optimal acidizing parameters are effective in practice, and the on-site results closely align with 
the model predictions. 
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Nomenclature

M – intermediate variable, [–] Greeek symbols

εT – Gaussian noise, [–]
σ2 n – variance of the noise, [–]
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