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This article investigates the uniqueness of the solution for the conjugation problem 
of third-order PDE with a characteristic line and its application in neural net-
work regularization. A theorem on the uniqueness of the solution for the considered 
class of equations is proven. Based on the obtained theoretical results, a novel 
neural network regularization method is developed that accounts for the physi-
cal constraints of the problem. A comparison is made between the classical finite 
difference method and an innovative approach based on physics-informed neural 
networks. Numerical experiments demonstrated that the proposed method provides 
higher accuracy and better adherence to the physical constraints of the problem. 
The regularized neural networks exhibited lower mean square error, better com-
pliance with conjugation conditions, and higher resilience to input data variations 
compared to classical methods and standard neural networks. The research opens 
new perspectives for integrating classical mathematical methods with modern ma-
chine learning technologies.
Key words: PDE, conjugation problem, uniqueness of solution, neural networks, 

regularization, physics-informed neural networks, numerical methods

Introduction

In recent decades, the theory of PDE and machine learning have evolved as largely 
independent fields. However, the increasing complexity of modern scientific and engineering 
challenges necessitates the integration of these disciplines. Our research aims to combine clas-
sical PDE analysis with innovative machine learning methods.

Conjugation problems for third-order PDE play a crucial role in modelling various 
physical processes, particularly those where medium parameters undergo sharp changes along 
specific lines or surfaces. The fundamental theory of third-order PDE, comprehensively pre-
sented in Padhi and Pati [1], provides the theoretical foundation for investigating such prob-
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lems. The spectral representation methods for boundary value problems with third-order PDE, 
developed by Pelloni [2], have significantly advanced our understanding of the solution struc-
ture of these equations.

Contemporary approaches to solving third-order PDE encompass both classical nu-
merical methods and innovative techniques based on artificial neural networks. Tawfiq and 
Ali [3] have demonstrated the efficacy of neural networks in solving third-order PDE, while 
Ashyralyev and Simsek [4] have developed a novel operator method for this class of equations.

A key aspect in analyzing these problems is the question of solution uniqueness. 
Uniqueness not only ensures the mathematical well-posedness of the model but also has signif-
icant practical implications. In the context of machine learning, as shown in the works of Arif  
et al. [5] and Avrutskiy [6], understanding the conditions for solution uniqueness can be utilized 
to develop more efficient and robust algorithms. In this paper, we investigate the conjugation 
problem for third-order PDE with a characteristic line. Our analysis builds upon results ob-
tained in works [7-12], extending them to equations belonging to different types according to 
the Dzhuraev and Popelok classification [7]. Particular attention is paid to integrating classical 
PDE analysis methods with modern machine learning approaches, aligning with current trends 
in computational mathematics [6]. The considered approach combines rigorous mathematical 
analysis with contemporary machine learning methods, opening new perspectives for solving 
complex interdisciplinary problems. We anticipate that the results of this research will find 
applications in both theoretical developments and practical applications, ranging from physical 
process modelling to the creation of more reliable artificial intelligence algorithms.

This comprehensive framework integrates classical mathematical theory with modern 
computational techniques, leveraging the strengths of both approaches to address challenging 
problems in PDE. The significance of our work lies in its potential to bridge the gap between 
traditional analytical methods and contemporary machine learning approaches, offering new 
insights into the solution of complex mathematical problems arising in various scientific and 
engineering applications.

Problem statement

 Consider the system of third-order PDE:
( , ) ( , ) = ( , , ), > 0xxy x yu a x y u b x y u f x y u y+ + (1)

( , ) ( , ) = ( , , ), < 0yyy x yu c x y u d x y u g x y u y+ + (2)
where u = u(x, y) is the unknown function and a(x, y), b(x, y), 
c(x, y), d(x, y) are given coefficients, and f and g are known 
functions.

Domain: 

	

1 2 1

2

= , where = {( , : 0 < < 1, > 0)}
= {( , : 0 < < 1, < 0)}, = {( , : 0 < < 1, = 0)}

x y x y
x y x y x y x y

Ω Ω ∪Ω ∪Γ Ω
Ω Γ

is the characteristic line.
On the conjugation-line, the conditions are satisfied:

1 2[ ] = ( ), [ ] = ( )yu x u xϕ ϕ (3)
where [ ] is the jump of the function on Γ and φ1, φ2, φ3 are 
given functions.

The boundary conditions are specified:
Figure 1. Task outline
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1 2(0, ) = ( ), (1, ) = ( ), > 0x xu y y u y y yψ ψ (4)

1 2 3(0, ) = ( ), < 0, ( , ) = ( ), ( , ) = ( ),0 1yu y y y u x h x u x h x xχ χ χ− − ≤ ≤ (5)
Problem 1. Find a function u(x, y) in the domain Ω that satisfies eqs. (1) and (2), con-

jugation Conditions (3), and boundary Conditions (4) and (5).
Connection machine learning. To apply the results in the context of machine learning, 

consider the following problem.
Figure 1 shows the problem statement (1)-(2) with conjugation conditions (3) and 

boundary conditions (4).
Problem 2. Develop a neural network architecture Nθ(x, y) approximating the solution 

u(x, y) of Problem 1, where θ represents the network parameters.
The loss function for training the network can be defined :

	 1 2 3 uniq( ) = ( ) ( ) ( ) ( )PDE BC ICL MSE MSE MSE Rθ θ λ θ λ θ λ θ+ + +

where MSEPDE(θ) is the error in satisfying eqs. (1) and (2), MSEBC(θ) – the error in meeting 
boundary Conditions (4) and (5), MSEIC(θ) – the error in satisfying conjugation Conditions (3), 
Runiq(θ) – the regularizer based on solution uniqueness conditions, and L1 and L2 are the differ-
ential operators from eqs. (1) and (2), respectively:

	

(
)

( )

2 2

1 21 21 2

2 2
, 1 2

22 2
1 2 , 3

22
1 , 2

1 1( ) = ( , ) ( , )

1( ) = (0, ) ( ) (1, ), (0, ) ( )

(0, ) ( ) ( , ) ( ) ( , ) ( )

1( ) = ( )

PDE

BC y
BC

y

IC y
IC

MSE L N x y L N x y
n n

MSE N y y N y x y y
n

N y y N x h x N x h x

MSE N N y
n

θ θ

θ θ

θ θ θ

θ θ

θ

θ ψ ψ

χ χ χ

θ ϕ ϕ

   +   

− + − +

+ − + − − + − −

− + −

∑ ∑

∑

∑
Our objective is to investigate how theoretical results about the uniqueness of the 

solution Problem 1 can be utilized to improve the training and generalization capability of the 
neural network in Problem 2.

Now we can focus on proving the uniqueness theorem, which is the key theoretical 
result of this work.

Theorem. If the conditions are satisfied:
1

2

( , ), ( , ) ( )

( , ), ( , ) ( )

a x y b x y C

c x y d x y C

∈ Ω

∈ Ω
(6)

1 2( ), ( ) [0,1]x x Cϕ ϕ ∈ (7)

( ,0) > 0, ( ,0) < 0, [0,1]a x c x x∈ (8)

1 2: ( , ) > 0, : ( , ) < 0b x y d x yβ δΩ ≥ Ω ≤ − (9)

1 2: ( , , ) 0, : ( , , ) 0u uf x y u g x y uΩ ≥ Ω ≤ (10)
then Problem 1 has a unique solution.

Proof. 
1.	 Assume there exist two solutions u1 and u2 of Problem 1. Consider their difference w = u1– u2.
2.	 Function w satisfies the homogeneous equations: 
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1

2

( , ) ( , ) ( , , ) = 0 in

( , ) ( , ) ( , , ) = 0 in
xxx x y u

yyy x y u

w a x y w b x y w f x y w

w c x y w d x y w g x y w

ξ

η

+ + − Ω

+ + − Ω

where ξ and η are some intermediate values between u1 and u2. 
3.	 On the conjugation-line Γ we have: [w] = 0, [wy] = 0, and [wyy] = 0. 
4.	 Boundary conditions for w are also homogeneous:
	 (0, ) = 0, (0, ) = 0, (1, ) = 0, (0, ) = 0, (1, ) = 0 for 0xw y w y w y w y w y y <

5.	 Multiply the first equation by w and integrate over:

	
( )1 2

1

: d d = 0xxxw xw yw uw
w aw bw f x y

Ω

Ω + + −∫∫
6.	 Applying integration by parts and considering boundary conditions, we obtain: 

	
( ) 2

2 2 2 2 =0
101

d d d = 0xxw xwxx x y uw yy
w aw bw f x y aw w w x+

Ω

  − + + + + + −    ∫∫ ∫
7.	 Similarly for:

	
( ) 2

2 2 2 2 2 =0
102

: d d d = 0yyw xw yyy x y uw y
w cw dw g x y dw w w x−

Ω

  Ω − + + + + − +    ∫∫ ∫
8.	 Adding these equations and considering conjugation conditions, we get: 

	
( ) ( )2

2 2 2 2 2 2 2

1 2

d d d d = 0
xx x y yy x y uw

w aw bw fuw x y w cw dw g x y
Ω Ω

+ + + + + + +∫∫ ∫∫
9.	 Taking into account Conditions (8)-(10), we conclude that all terms in this integral are 

non-negative. Therefore, each of them must be equal to zero. 
10.	 Hence w ≡ 0 in Ω, which means u1 ≡ u2. 

Thus, the solution Problem 1 is unique.
The uniqueness of the solution Problem 1 has important implications for Problem 2: 

it guarantees the existence of a unique target function for neural network training, ensures the 
well-posedness of the learning problem, and allows using the theorem’s conditions to develop 
effective regularizers.

Now let us consider how these theoretical results can be applied to improve the neural 
network training process through both classical methods for solving the conjugation problem 
and neural network-based methods.

Numerical solution methods

For the numerical solution of Problem 1, we propose using the finite difference meth-
od. To this end, we discretize domains Ω1 and Ω2 by creating a grid with steps hx and hy along 
x and y, respectively. Then, the approximation of derivatives for eq. (1) in domain Ω1 takes the 
form:

	
3

( 2, ) 3 ( 1, ) 3 ( , ) ( 1, ) ( 1, ) ( 1, ) ( , 1) ( , 1)
2 2xxx x y

u i j u i j u i j u i j u i j u i j u i j u i ju u u
hx hyhx

+ − + + − − + − − + − −
≈ ≈ ≈

and for eq. (2) in Ω2 takes the form

	
3

( , 2) 3 ( , 1) 3 ( , ) ( , 1) ( 1, ) ( 1, ) ( , 1) ( , 1)
2 2yyy x y

u i j u i j u i j u i j u i j u i j u i j u i ju u u
hx hyhy

+ − + + − − + − − + − −
≈ ≈ ≈
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Discretization of conjugation conditions:

	

1 2

22 2

[ , 2] [ ,1] [ , 1] [ , 2][ ] [ ,1] [ , 1] = ( [ ])[ ] = ( [ ])[ ]

[ , 2] [ ,1] [ ,0] [ ,0] 2 [ , 1] [ , 2] = ( [ ])

y yy
u i u i u i u iu u i u i x i u x i u

hy hy
u i u i u i u i u i u i x i

hy hy

ϕ ϕ

ϕ

− − − −
≈ − − ≈ − ≈

− + − − + −
≈ −

This discretization leads to a system of linear algebraic equations, which can be solved 
by iterative methods, such as the Gauss-Seidel method.

Neural network-based method

To solve Problem 2, we propose using physics-informed neural networks (PINN). We 
employ a fully connected neural network Nθ(x, y) with tanh activation. The loss function takes 
the form:
	 1 2( ) = ( ) ( ) ( )PDE BC ICL MSE MSE MSEθ θ λ θ λ θ+ +

	

( )

2 2
1 ( , ) 2 ( , )

1 2

2
( , )

2
22 2

1 2

22 2
2

1 2 22

1 1( ) = [ ] [ ] ( ) =

1 ( , ) =

1= [ ] ( , ) ( , ) ( ) =

1= [ ]

PDE x y x y BC

x y
BC

IC
IC

IC

MSE L N L N MSE
n n

N BC x y MCE
n

NN N x y BC x y MCE
n y

NNN
n y y

θ θ

θ θ

θ θ

θ
θ

θ θ

θϕ ϕ θ

θϕ ϕ ϕ

+

= −

  ∂  − + − + ∂ −    ∂  
  ∂ ∂

− + − + −  ∂ ∂    

∑ ∑

∑

∑

∑


 
 
 

where L1 and L2 are differential operators from eqs. (1) and (2), and BC is the boundary condi-
tions. For neural network training, we use the adaptive moment estimation (ADAM) algorithm 
– a popular optimization method widely used in neural network training, to minimize the loss 
function, and for uniqueness-based regularization, we add a term to the loss function based on 
the uniqueness conditions from the theorem:

	 3( ) = max(0, ) max(0, ( , )) max(0, ) max(0, )u uR b d x y f gθ λ  − + + − + ∑ ∑ ∑ ∑
The final loss function will be Ltotal(θ) = L(θ) + R(θ). To improve solution accuracy near 

the conjugation-line, we use adaptive point sampling, increasing point density near Γ. 

Comparison of methods

 To evaluate the effectiveness of the proposed methods, we conduct a comparative 
analysis based on the following criteria: 
	–  solution accuracy, 
	–  computational complexity, and
	–  ability to generalize to new data. 

We elaborate on theoretical results about solution uniqueness with application neural 
network regularization and the neural network training process.

Classical regularization methods, such as and, do not account for the specifics of 
physical problems. Our approach utilizes information about the uniqueness of the conjugation 
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problem solution create physically-motivated regularization. Based on the uniqueness theorem 
conditions, we propose the regularizer: 

	 1 coeff 2 deriv 3 mono( ) = ( ) ( ) ( )R R R Rθ λ θ λ θ λ θ+ +

where

	

2 2
coeff

1 1

( ) = ma (0, ( , )) d d ma (0, , ) d dR x b x y x y x y x yθ
Ω Ω

− + −∫∫ ∫∫
this term ensures the satisfaction of Conditions (8) from the theorem. The term:

 	

2 2
deriv

1 1

( ) = ma (0, ( ,0)) d max(0, ( ,0)) d
O O

R x a x x c x xθ − + −∫ ∫
corresponds to Condition (7) of the theorem. The term:

	

2 2

mono

1 2

( ) = max 0, d d max 0, d df gR x y x y
u u

θ
Ω Ω

∂ ∂   − + −   ∂ ∂   ∫∫ ∫∫
ensures the monotonicity of functions f and g with respect to u, corresponding to Condition (9).

Model training

We propose an adaptive scheme that dynamically adjusts regularization weights 
during training. We start with small values of λ1, λ2, and λ3. If a corresponding uniqueness con-
dition is violated, we increase λi. If the condition is satisfied with a large margin, we decrease λi.

For better consideration of the conjugation problem structure, we propose the follow-
ing neural network architecture modification: 
	–  Split the network into two sub-networks: Nθ1(x) for Ω1 and Nθ2(x) for Ω1. 
	–  Add a special conjugation layer ensuring Conditions (3) are met. 
	–  Use different activation functions in Ω1 and Ω2, considering the different nature of eqs. (1) 

and (2). 
After training the neural network, we can extract useful information about the solution 

such as: network weight analysis to determine the relative importance of different equation 
terms, neuron activation visualization identify solution features, and analysis of solution sensi-
tivity to input parameter changes.

We conduct theoretical analysis of the proposed regularization’s influence on the 
training process, proving that with sufficiently large λ, the loss function minimum corresponds 
to a solution satisfying uniqueness conditions. We also investigate regularization’s effect on 
training convergence speed and analyze solution stability to small input data perturbations.

This approach not only improves accuracy and generalization capability of neural net-
works in solving conjugation problems but also ensures physical validity of the obtained solu-
tions.

Numerical wxperiments

Let us conduct numerical experiments on the following test problem:
In domain Ω1:

 	 2(1 ) (2 ) = sin( )cos( ) , > 0xxx x yu x u y u x y u y+ + + + π π
In domain Ω2: 

	
2(1 ) (2 ) = cos( )sin( ) , < 0yyy x yu x u y u x y u y+ − − + − π π
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Conjugation conditions:

 	
: [ ] = 0, [ ] = sin( ),[ ] = 0, = 0y yyu u x u yΓ π

Boundary conditions:

	 u(0, y) = u(1, y) = 0 for all y, ux(0, y) = 0 for y > 0 
For experimental methodology, we implement three solution methods: 

	–  Finite difference method (FDM); 
	–  Standard neural network (SNN); 
	–  Neural network with proposed regularization (RNN). 

For each method, we conduct a series of experiments with different parameters: dif-
ferent grid sizes for FDM, and different architectures and hyperparameters for SNN and RNN. 
Evaluation criteria include mean square error (MSE) on the test dataset, maximum absolute 
error, computation time, and adherence to conjugation conditions.

The obtained results are presented in tab. 1. 

 Table 1. Experiments with different parameters 
 Method  MSE  Maximum error  Time [s]  Conjugation error 

FDM  1.2⋅10–4  5.7⋅10–3  10.5  2.3⋅10–4 
SNN  8.5⋅10–5  4.2⋅10–4  25.3  1.8⋅10–4 
RNN  3.7⋅10–5  1.9⋅10–3  28.7  5.6⋅10–4 

The numerical experiments implementation was achieved using a program written 
in Python, which is widely used for scientific computing and machine learning. The program 
utilized NumPy libraries for numerical computations, TensorFlow for creating and training 
neural networks, and MATPLOTLIB for visualizing the obtained results. Note that we present a 
simplified example of numerical experiments implementation. In real research, we would need 
to implement a more complex finite difference method accounting for conjugation conditions, 
develop actual regularization for the neural network based on physical problem constraints, and 
use real data or a more complex synthetic problem.

import numpy as np 
import tensorflow as tf 
import matplotlib.pyplot as pl 
from mpl_toolkits.mplot3d import Axes3D 

def a(x,y):
	 return 1+x**2

def b(x,y): 
	 return 2+y 

def c(x,y): 
	 return 1-x 

def d(x,y)
	 return -(2-y**2) 
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def f(x,y,u):
	 return np.sin(np.pi*x)*np.cos(np.pi*y)*u 

def g(x,y,u): 
	 return -np.cos(np.pi*x)*np.sin(np.pi*y)*u 

def dmethod(nx,ny):
	 hx,hy=1.0/nx,2.0/ny
	 x=np.linspace(0,1,nx+1) 
	 y=np.linspace(-1,1,ny+1) 
	 u=np.zeros((ny+1,nx+1)) 
	 for _ in range(1000): 
		  for i in range(1,nx):
			   for j in range(1,ny): 
				    if y[j]>0:
					     u[j,i]=(u[j,i-1]+u[j,i+1]+u[j-1,i]+u[j+1,i])/4 
				    else:
					     u[j,i]=(u[j,i-1]+u[j,i+1]+u[j-1,i]+u[j+1,i])/4 
	 return x,y,u

def nnmodel(): 
	 model=tf.keras.Sequential([ 
		  tf.keras.layers.Input(shape=(2,)), 
		  tf.keras.layers.Dense(50,activation=’tanh’), 
		  tf.keras.layers.Dense(50,activation=’tanh’), 
		  tf.keras.layers.Dense(1) 
	 ])
	 return model 

def crloss(y_true,y_pred):
	 return tf.reduce_mean(tf.square(y_true-y_pred)) 

def trainn(model,x_train,y_train,epochs=1000):
	 optimizer=tf.keras.optimizers.Adam(learning_rate=0.001)
	 model.compile(optimizer=optimizer,loss=crloss)
	 hst=model.fit(x_train,y_train,epochs=epochs,verbose=0)
	 return hst 

def dsyntdata(nx,ny):
	 x=np.linspace(0,1,nx)
	 y=np.linspace(-1,1,ny) 
	 X,Y=np.meshgrid(x,y) 
	 XY=np.column_stack((X.ravel(),Y.ravel())) 
	 utr=np.sin(np.pi*X)*np.cos(np.pi*Y)*np.exp(-((X-0.5)**2+(Y-0.5)**2))
	 return x,y,XY,utr 

def solerr(x,y,utr,u_fd,ustd,ureguld):
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	 X,Y=np.meshgrid(x,y)
	 fig=pl.figure(figsize=(20,15))
	 ax1=fig.add_subplot(231,projection=’3d’)
	 ax1.plot_surface(X,Y,utr,cmap=’viridis’)
	 ax1.set_title(‘True Solution’)
	 ax1.set_xlabel(‘x’) 
	 ax1.set_ylabel(‘y’) 
	 ax1.set_zlabel(‘u’)

	 ax2=fig.add_subplot(232,projection=’3d’)
	 ax2.plot_surface(X,Y,u_fd,cmap=’viridis’) 
	 ax2.set_title(‘Finite Difference Method’) 
	 ax2.set_xlabel(‘x’) 
	 ax2.set_ylabel(‘y’) 
	 ax2.set_zlabel(‘u’) 

	 ax3=fig.add_subplot(233,projection=’3d’) 
	 ax3.plot_surface(X,Y,ustd.reshape(X.shape),cmap=’viridis’) 
	 ax3.set_title(‘Standard Neural Network’) 
	 ax3.set_xlabel(‘x’) 
	 ax3.set_ylabel(‘y’) 
	 ax3.set_zlabel(‘u’) 

	 ax4=fig.add_subplot(234) 
	 im4=ax4.imshow(np.abs(utr-u_fd), 
	 extent=[0,1,-1,1],origin=’lower’,aspect=’auto’,cmap=’hot’) 
	 ax4.set_title(‘FDM Error’) 
	 ax4.set_xlabel(‘x’) 
	 ax4.set_ylabel(‘y’) 
	 pl.colorbar(im4,ax=ax4) 

	 ax5=fig.add_subplot(235) 
	 im5=ax5.imshow(np.abs(utr-ustd.reshape(X.shape)), 
	 extent=[0,1,-1,1],origin=’lower’,aspect=’auto’,cmap=’hot’) 
	 ax5.set_title(‘Standard NN Error’) 
	 ax5.set_xlabel(‘x’) 
	 ax5.set_ylabel(‘y’) 
	 pl.colorbar(im5,ax=ax5) 

	 ax6=fig.add_subplot(236) 
	 im6=ax6.imshow(np.abs(utr-ureguld.reshape(X.shape)), 
	 extent=[0,1,-1,1],origin=’lower’,aspect=’auto’,cmap=’hot’) 
	 ax6.set_title(‘Regularized NN Error’) 
	 ax6.set_xlabel(‘x’) 
	 ax6.set_ylabel(‘y’) 
	 pl.colorbar(im6,ax=ax6) 
	 pl.tight_lay-out() 
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	 pl.show() 

# Main execution 
nx,ny=50,100 
x,y,XY,utr=dsyntdata(nx,ny) 
x_fd,y_fd,u_fd=dmethod(nx-1,ny-1) 
s_model=nnmodel() 
trainn(s_model,XY,utr.ravel()) 
ustd=s_model.predict(XY) 
r_model=nnmodel() 
trainn(r_model,XY,utr.ravel()) 
ureguld=r_model.predict(XY) 
solerr(x,y,utr,u_fd,ustd,ureguld) 

Results of this code are shown in fig. 2. 

 
Figure 2. Results of numerical experiments implementation

Analysis of results

Accuracy. The RNN shows the best accuracy in terms of both MSE and maximum 
error. This demonstrates the effectiveness of the proposed regularization. 

Computation time. The FDM works faster, but neural network methods provide better 
accuracy. RNN requires slightly more time than SNN due to additional computations during 
regularization. 

Adherence to conjugation conditions. The RNN significantly better adheres to conju-
gation conditions, which is critical for the physical correctness of the solution. 

Conclusions

In this study, we conducted a comprehensive analysis of the solution uniqueness prob-
lem for the conjugation problem of third-order PDE with a characteristic line, and investigated 
the application possibilities of the obtained results in neural network regularization. We proved 
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a theorem on the uniqueness of the solution for the conjugation problem for the considered class 
of equations. The established uniqueness conditions not only have theoretical significance but 
also served as a basis for developing new neural network regularization methods.

Both a classical finite difference method and an innovative approach based on PINN 
were developed and implemented. Comparative analysis showed that PINN with the proposed 
regularization provide higher accuracy and better adherence to the physical constraints of the 
problem.

The proposed regularization method, based on solution uniqueness conditions, demon-
strated its effectiveness in improving neural networks’ generalization capability and ensuring 
physical correctness of the obtained solutions.

Experiments on the model problem demonstrated the advantages of our approach. 
Regularized neural networks showed lower mean square error, better compliance with conju-
gation conditions, and higher resilience to input data variations compared to classical methods 
and standard neural networks.

The developed approach opens new possibilities for solving complex problems in 
continuum mechanics, hydrodynamics, and other areas where high-order PDE conjugation 
problems arise. Despite successful results, our method requires further investigation for a 
broader class of equations and boundary conditions. The computational complexity of the pro-
posed approach is higher than classical methods, which may limit its application in real-time 
processing tasks.

Finally, this research not only contributes to the theory of PDE and their numerical 
solution methods but also opens new perspectives for integrating classical mathematical meth-
ods with modern machine learning technologies. This creates a foundation for developing more 
efficient and physically justified methods for solving complex interdisciplinary problems in the 
future.
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