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This study on the negative-order fractional space-time modified KdV (nfmKdV) 
equation provides a comprehensive analysis of how fractional differentials affect the 
dynamics of solitons in non-linear wave models. We are referring to introduces the 
nfmKdV equation, a significant extension of the traditional KdV equation, which is 
commonly used to model wave propagation in non-linear dispersive media. By de-
veloping both focusing and defocusing solutions and employing the Hirota technique 
to construct multisoliton solutions, the study opens new avenues for the exploration 
of fractional wave equations in diverse physical contexts. The use of fractional cal-
culus, and specifically negative-order derivatives, enhances the model’s ability to de-
scribe real-world phenomena with long-range interactions and memory effects, of-
fering significant potential for future research in non-linear and fractional dynamics. 
This newly established result warrants further investigation determine its applicabil-
ity to other non-linear fractional order models, and other existing methods may be 
employed to explore this new development. As the fractional order approaches one, 
the results align with well-established findings in the literature. This study provides a 
deeper understanding of the dynamics of solitons in fractional media, which could be 
useful for modelling soliton propagation in systems where traditional integer-order 
models fail to capture essential behavior.
Key words: fractional mKdV model, fractional differential models,  

Hirota technique 

Introduction

The recursion operator is essential in the analysis of integrable equations, especially 
in the context of (1+1)-D non-linear PDE. It provides a systematic method for generating an 
infinite sequence of symmetries, which are essential for understanding the integrability of the 
system. Through iterative application, the recursion operator generates higher-order symme-
tries, leading to exact solutions and conserved quantities. This infinite hierarchy of symmetries 
is key to the phenomenon of solitons, whose shape is preserved during interactions. Addition-
ally, the recursion operator serves as a powerful tool for extending the study of integrability to 
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higher dimensions, enabling the modelling of more complex natural phenomena in fields like 
plasma physics, fluid dynamics, and non-linear optics [1-9].

The recursion operator was first introduced by Olver [4], who demonstrated that ap-
plying this operator to a known symmetry produces a new, higher-order symmetry, forming an 
infinite hierarchy of symmetries. Later, Magri [6] expanded this idea by introducing bi-Hamil-
tonian systems, which possess two compatible Hamiltonian structures crucial for integrability. 
Verosky [8] further developed Olver’s theory by considering negative-order equations, leading 
to a broader framework for solving generalized integrable systems. The application of recur-
sion operators and their role in generating infinite symmetries have had profound implications 
in the theory of non-linear PDE, offering new insights into both integrable and non-integrable 
systems. This framework has greatly advanced research in mathematical physics, particularly 
in areas such as fluid dynamics and non-linear optics [10-14].

Recently, there has been an increasing interest in functional differential equation 
(FDE) because of their wide-ranging applications in engineering and physics. Abundant im-
portant phenomena in fields such as acoustics, electromagnetics, electrochemistry, viscoelastic-
ity, and materials science are effectively modeled by FDE. However, solving these FDE can be 
quite challenging. Typically, there is no universal techniques that produces explicit and numer-
ical solution for non-linear FDE [15-26]. In this framework, fractional differentials are consid-
ered in the conformable sense. Non-integer calculus encompasses the idea of differentials and 
integrals of random order, effectively unifying and generalizing the principles of integer-order 
derivatives and repeated integrals. Numerous books have been published on non-integer calcu-
lus, discussing numerous classifications of non-integer differentiation and integration, includ-
ing those by Riemann-Liouville (RL), Grunwald-Letnikov, Caputo, and the modified RL. For 
the purposes of this study, we will employ the conformable fractional differential (CFD). Khalil 
et al. [27] presented the CFD in the limit form:

	

1
( ) ( )

0 0

( ) ( )( ) lim , (0) lim ( )
s

s s sD s s
α

α α α

ε

ψ ε ψψ ψ ψ
ε +

−

→ →

+ −
= =

with s > 0 and α ∈ (0, 1], since ψ(α)(0) is not determined. This fractional differential goes back to 
the famous integer differential at α = 1. The corresponding CFD satisfies the will know axioms 
of differentiation see [20-26].

The nfmKdV equation is a generalized form of the standard KdV equation, where 
the traditional time and spatial derivatives are replaced by fractional derivatives of negative 
order. This concept arises from the theory of fractional calculus, which allows the order of dif-
ferentiation be non-integer, providing a more flexible and powerful framework to model com-
plex systems, particularly those exhibiting memory effects, anomalous diffusion, or long-range 
interactions. In classical models like the KdV equation, the dynamics are governed by local 
interactions, with integer-order derivatives capturing the change of quantities at specific points 
in space and time. However, fractional derivatives can model situations where the effects at a 
given point depend not only on the immediate local surroundings but also on distant past states 
or long-range interactions. The negative-order aspect of the fractional derivatives is particularly 
important. In fractional calculus, negative orders can model processes that retrace or involve 
backward influences, such as a response that decays or grows in an unusual, non-exponential 
manner. This is key to understanding the complex dynamics of wave propagation, particularly 
when dealing with phenomena like inverse dispersion or non-locality.
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Linking recursion operators to fractional derivatives

In the classical theory of integrable systems, recursion operators serve as tools for 
generating higher-order symmetries of evolution equations, often leading to the construction 
of soliton solutions. These operators are typically integer-order differential operators, but when 
fractional derivatives are introduced into the framework, the concept of recursion operators 
must be generalized to handle these non-integer orders. Fractional derivatives extend the con-
ventional concept of differentials to fractional orders, offering a more nuanced description of 
physical processes characterized anomalous diffusion, memory effects, or non-local behavior. 
By applying fractional calculus to non-linear evolution equations, we can derive fractional 
evolution equations, which generalize classical models (such as the KdV equation) to account 
for more complex dynamics.

Fractional recursion operators

To incorporate fractional derivatives into the theory of recursion operators, we consider 
fractional recursion operators-operators that, when applied to a symmetry of a fractional evolution 
equation, produce a new symmetry. These operators are typically defined in terms of fractional 
derivatives (of the form Dα, where α is a fractional order) rather than integer derivatives. The key 
idea is that, like their integer-order counterparts, fractional recursion operators generate an infinite 
sequence of symmetries, which is crucial for the complete integrability of fractional evolution 
systems. For example, the fractional KdV (fKdV) equation, which includes fractional derivatives, 
the recursion operator Ω(ψ) might be modified to accommodate these fractional orders. The op-
erator would take a symmetry ψ(t, x) and generate a new symmetry of the fractional equation, in-
corporating fractional derivatives throughout the process. This is a direct extension of the classical 
recursion operator theory, where the differential operators are replaced with fractional operators.

Negative-order fractional equations

Similar to the extension of recursion operators to negative orders as introduced by 
Verosky [8], we can extend the concept to negative-order fractional equations. These equations 
would involve fractional derivatives of negative order D–α, such as, and could be generated 
by applying the fractional recursion operator to lower-order symmetries. These negative-order 
fractional equations could describe phenomena such as fractional diffusion or wave propaga-
tion with memory effects. Just as recursion operators in the classical sense allow the generation 
of higher-order symmetries, fractional recursion operators would generate an infinite sequence 
of symmetries for fractional evolution equations. These symmetries, in turn, can be used to 
construct exact solutions, including fractional solitons or singular fractional soliton solutions, 
analogous to the classical case but with more complex, fractional behaviors.

Fractional Hamiltonian structures and multi-Hamiltonian systems

The introduction of fractional derivatives into the framework of recursion operators 
may also affect the Hamiltonian structure of the system. As we saw with bi-Hamiltonian sys-
tems in the classical case [6], where two compatible Hamiltonian structures lead to the integra-
bility of the system, fractional derivatives might result in fractional bi-Hamiltonian systems. In 
such systems, the fractional recursion operator could be related to two different but compatible 
fractional Hamiltonian formulations of the equation. The introduction of fractional derivatives 
into the framework of recursion operators may also affect the Hamiltonian structure of the sys-
tem. As we saw with bi-Hamiltonian systems in the classical case [6], where two compatible 
Hamiltonian structures lead to the integrability of the system, fractional derivatives might result 



Zubair, S., et al.: Exploring Multiple and Singular Soliton Solutions ... 
362	 THERMAL SCIENCE: Year 2025, Vol. 29, No. 1A, pp. 359-370

in fractional bi-Hamiltonian systems. In such systems, the fractional recursion operator could be 
related to two different but compatible fractional Hamiltonian formulations of the equation.

Generalizing the Painleve test and soliton solutions

In the context of fractional evolution equations, we can also extend the Painleve test 
and soliton solutions analysis to fractional models. The Painleve test, which is used to check 
the integrability of equations by determining the singularity structure of their solutions, can be 
adapted to handle fractional derivatives. Applying the fractional recursion operator could reveal 
new types of fractional soliton solutions (such as multi-solitons and singular fractional solitons) 
which are the natural analogs of the classical solitons but exhibit fractional characteristics such 
as non-local interactions or long-tail behaviors. The incorporation of fractional derivatives into 
the framework of integrable systems allows us to explore more general solution types, and the 
fractional recursion operator becomes an essential tool in deriving these solutions.

Applications in physics and engineering

The introduction of fractional derivatives into integrable models, through fractional re-
cursion operators, opens up new avenues for modelling physical phenomena that exhibit non-lo-
cal effects, anomalous diffusion, or memory. Examples include, fractional diffusion models, these 
models describe processes in materials with complex, non-local properties, such as those found in 
viscoelasticity, porous media, or disordered systems. Plasma physics and fluid dynamics: fractional 
differential systems have been used to model waves and turbulence in plasmas, where non-local 
interactions are present. Non-linear optics, the study of light propagation in non-linear media with 
memory effects can be modeled using fractional evolution equations, with fractional recursion 
operators providing a means to generate symmetries and exact solutions.

Linking the previous results on recursion operators and integrable systems to fraction-
al derivatives involves extending the classical theory of recursion operators to accommodate 
fractional calculus. Fractional recursion operators generate infinite sequences of symmetries 
for fractional evolution equations, mirroring the classical case but with the added complexity 
of fractional derivatives. This extension not only broadens the scope of integrable systems 
but also opens new areas of research in mathematical physics, where fractional derivatives 
are increasingly used to model complex, non-local phenomena. By incorporating fractional 
recursion operators, we can derive new classes of soliton solutions, explore bi-Hamiltonian 
structures, and apply these ideas to a variety of physical models involving fractional dynamics. 
A fractional hereditary symmetry Ω(ψ) is a fractional operator function ψ(t, x) that produces a 
hierarchical set of fractional evolution systems, with Ω(ψ) acting as a recursion operator within 
this hierarchy. Specifically, Ω(ψ) serves as the recursion operator for the corresponding series 
of fractional evolution systems:

, 0,1, 2,....n
t xD D nα αψ ψ= Ω = (1)

It is evident that this equation generates a family of (1+1)-D fractional sytems, with 
the particular form dependent on the significance of n. The fKdV equation, is obtained:

6 0t x xD D Dα α αααϕ ϕ ϕ ϕ+ + = (2)
with the recursion operator Ω(φ), defined:

( ) 4 2x xD Dαα αϕ ϕ ϕ −Ω = − − − (3)
where αx is the whole fractional differentials with respect to x, and αx

–1 – the associated fraction-
al integration operator.
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It is widely recognized that the mfKdV models manifest in two distinct formulas: the 
focusing and the defocusing branches given:

26 0t x xD D Dα α αααϕ ϕ ϕ ϕ+ + = (4)
26 0t x xD D Dα α αααϕ ϕ ϕ ϕ− + = (5)

with the corresponding recursion operators given:

1 4 4x xD Dαα αϕ ϕ −Ω = − − (6)

2 4 4x xD Dαα αϕ ϕ −Ω = − + + (7)
Correspondingly, the last terms in eqs. (6) and (7) represents an operator that takes a 

polynomial P ∈ R(φ), multiplies it by φ, applies the converse operator Dx
–α, and then multiplies 

the outcome by 4 Dx
αφ. The recursion operators in eqs. (6) and (7) have been employed in the 

literature, especially for developing new equations in higher dimensions. Recall that eq. (1) 
represents:

t xD Dα αϕ ϕ= Ω (8)
Through the minas-order fractional hierarchy, we mention the sequence of equations 

characterized by progressively lower (more negative) orders of fractional derivatives:
1

t xD Dα αϕ ϕ−= Ω (9)
That is, the powers of Ω move in the reverse direction. In other words, the minas-order 

equation can be expressed:

t xD Dα αϕ ϕΩ = (10)
Provided the fractional recursion operator is hereditary and supports an invertible 

implectic-symplectic separation, the negative-order fractional systems also reveal multi-Ham-
iltonian constructions [7]. It is worth noting that, for systems in (2+1)-D, such as the fractional 
KP equation, no standard recursion operator exists.

The Hirota technique is a well-known perturbative technique used to derive multi-soli-
ton solutions for integrable equations. In this study, the Hirota technique proves to be an effective 
mathematical tool for constructing these multi-soliton solutions for the nfmKdV equation, both 
for the focusing and defocusing branches. The advantage of using the Hirota technique lies in its 
ability to handle complex non-linear equations by converting the problem into a series of simple 
algebraic equations. This method has proven highly efficient in generating exact multi-soliton 
solutions for a variety of non-linear PDE, especially in systems involving fractional derivatives.	

The study distinguishes between two branches of the nfmKdV equation, correspond-
ing to focusing and defocusing behaviors. These branches refer to the two types of wave interac-
tions that can occur depending on the non-linear nature of the equation. This study utilizes the 
fractional recursion operator to derive the two negative-order forms of the nfmKdV equation: one 
for the focusing branch and another for the defocusing branch. These two branches correspond 
to different behaviors of the soliton solutions (focusing leading to possible singularities and 
defocusing leading to stable solitons).

The focusing branch of the negative-order modified fractional KdV equation

The nfmKdV equation for the focusing branch eq. (4) corresponds to the case where 
non-linearities cause the wave to concentrate or collapse in a finite time. In many physical sys-
tems, the focusing branch is associated with phenomena like soliton blow-up, where the wave 
amplitude grows indefinitely at a finite point in time. In the context of the nfmKdV equation, 



Zubair, S., et al.: Exploring Multiple and Singular Soliton Solutions ... 
364	 THERMAL SCIENCE: Year 2025, Vol. 29, No. 1A, pp. 359-370

this branch describes the tendency of wave packets to focus and form singularities. First, we 
formulate the nfmKdV equation for the focusing branch eq. (4) by applying the negative-order 
fractional hierarchy:

t xD Dα αϕ ϕΩ = (11)
with the recursion operator Ω for the focusing branch is provided in eq. (6). In essence, we 
utilize:

( )4 4x x t xD D D Dαα α α αϕ ϕ ϕ ϕ−− − − = (12)
which yields:

24 4 ( )x t t x x t xD D D D D D Dαα α α α α α αϕ ϕ ϕ ϕ ϕ ϕ ϕ−− − − = (13)
Thus, we can apply:

24
( )

4
x t t x

x t
x

D D D D
D D

D

αα α α α
α α

α

ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ
− + +

= − (14)

To eliminate Dx
–α (φDt

αφ) we take fractional differentiate for the two sides of eq. (13) 
with respect to x, resulting:

24 12 4 ( )x t x t x t x x t xD D D D D D D D D Dααα α α α α α αα α α ααϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ−− − − − = (15)
Replacing (14) into (15) results in the nmfKdV equation:

2 2 24 12 ( ) 4 0x x t x x t x t x x t x tD D D D D D D D D D D D Dα ααα α α α α α α αα αα α αα αϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− − − + + = (16)

Examining the fractional Painleve property of eq. (16)

The fractional Painleve property is an extension of the Painleve property to FDE. This 
means that for a given FDE, one looks for conditions under which the general solution has the 
same desirable behavior as in the classical Painleve property, the solutions should have no sin-
gularities other than isolated poles, even in the fractional context. Similar to the classical Pain-
leve property, the solution should only exhibit poles as singularities, and these should be isolat-
ed, rather than having branch points, which are more characteristic of non-integrable systems. 
If a FDE possesses the fractional Painleve property, it suggests that the system might exhibit 
integrable behavior or solvable dynamics, similar to the classical integrable equations that are 
known to possess the Painleve property. Equation (16) is called to exhibit the fractional Painleve 
property if its solutions are ‘single-valued’ on arbitrary non-characteristic, movable singularity 
fractional manifolds. In other words, the solutions can be expressed as Laurent series:

	 0

s n
s

s
ϕ ϕ ψ

∞
+

=

= ∑

with a sufficient number of arbitrary functions among φs in addition ψ. The Painleve proper-
ty test, as outlined by the Weiss-Tabor-Carnevale technique, involves three key steps. Firstly, 
the order n and the coefficient φ0 ​must be determined. For this purpose, we put φ = φ0 ψn, into  
eq. (16). By balancing the non-linear and fractional dispersive terms, we obtain:

	 01, , 1xn iD iαϕ ψ= − = ± = −

The next stage is to determine the resonant points. Substituting:

 	
1 1

0
j

jϕ ϕ ψ ϕ ψ− −= +

into eq. (16), along with eq. (17), and setting the coefficient of ψ j–7 equal to zero, we get:
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5( ) ( 1)( 2)( 3)( 4) 0t x jD D j j j jα αψ ψ ϕ + − − − = (18)
from this, we observe that four resonant points happen at j = –1, 2, 3, and 4. The final step is to 
test the resonant conditions. We may suppose:

 	

4
1

0

s
s

s
ϕ ϕ ψ =

=

= ∑

To simplify the calculations, we adopt Kruskal’s ansatz:

	

x tα α

ψ ψ
α α

 
= +  

 

Thus, the coefficients φs will be functions of t only. By putting the expression (18) into 
eq. (16) and collecting the terms based on the different powers of ψ, we arrive:

1 1 1 2 1
2

1 3 1 1 2 2 1

12 0, 4 0, 4 (9 ) 0

4(18 2 3 7 ) 0
t t t t

t t t t

i D iD D D

D i D D D

α α α α

α α α α

ϕ ψ ϕ ϕ ϕ ψ ϕ

ϕ ϕ ψ ϕ ψ ϕ ϕ ϕ ϕ

± = ± = − =

± − − =
(19)

From the first equation we deduce that φ1 = 0, so the reminder three equations are 
satisfied identically, indicating that φ2, φ3, and φ4 are arbitrary functions of t.

Calculating multi-soliton solutions for eq. (16)

Solitons are wave solutions to non-linear equations that maintain their shape and 
speed during propagation, often described as localized waves. In this study, the researchers use 
the Hirota technique, a powerful perturbative technique, to construct multi-soliton solutions for 
the nfmKdV equation. To derive the dispersion relation, we set:

1 ,( , ) tan
( , )x
t xt x RD f

g t x

α α
α α α

α αϕ −
   =   

    
(20)

where the auxiliary functions f(tα, xα) and g(tα, xα) , for the single soliton solutions, is given:
( )/( , ) 1 e , ( , ) 1kx tf t x g t x

α αα α ω α α α−= + = (21)
Replacing eq. (20) into the nmfKdV (16) gives the dispersion relation by R = 2, and  

ω = –1/k. The simplest soliton solutions where a single solitary wave travels without changing 
shape. This solution represents a single, localized disturbance in the medium, so the single soli-
ton solutions take the formula:

( / )/

2( / )/

2 e( , )
1 e

k x t k

k x t k

kt x
α α

α α

α
α α

α
ϕ

+

+
=

+
(22)

For computing the two soliton solutions, we put the auxiliary function:

1 2 1 2
12( , ) e e , ( , ) 1 e , , 1, 2

i

i
i

k x t
k

f t x g t x a i

α α

θ θ θ θα α α α θ
α

+

+

= + = − = =
(23)

Using eq. (23) in eq. (20) and substituting the result in eq. (16), we obtain the follow-
ing phase shift coefficient:

( )
( )

2
1 2

12 2
1 2

k k
a

k k

−
=

+
(24)

and hence we set the phase shifts:
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( )
( )

2

2 , 1 3i j
ij

i j

k k
a i j

k k

−
= ≤ ≤ ≤

+
(25)

Combining eqs. (24) and (23) and substituting the outcome into eq. (20), we obtain the 
two-soliton solutions. In this case, two solitons interact with each other. This solution highlights 
the ability of solitons to collide without changing their form, a characteristic feature of integra-
ble systems like the KdV equation. For the three-soliton solutions, we set:

3 1 2 3 2 3 1 31 2 1 2
123 12 23 13( , ) e e e e , ( , ) 1 e e e

, 1,2,3

i

i
i

f t x b g t x a a a

k x t
k

i

θ θ θ θ θ θ θ θθ θ θ θα α α α

α α

θ
α

+ + + ++= + + − = − − −

+

= =

(26)

Proceeding as before, we find that:
123 12 23 13b a a a= (27)

This indicates that three-soliton solutions are attainable. The three-soliton solutions 
is a more complex interaction, where three solitary waves interact in a similar manner to the 
two-soliton solutions. This demonstrates the non-linear interaction between multiple waves, 
where the solitons can pass through one another while retaining their identity. The presence 
of three-soliton solutions typically suggests the integrability of the equation being studied, and 
N-soliton solutions can be derived for any finite N, where N > 1. The general N-soliton solutions 
provides a uniform formula that describes the interaction of an arbitrary number of solitons. 
This is a powerful result, as it allows the exact dynamics of multiple solitons to be calculated 
efficiently. The uniformity of this formula demonstrates the robustness of the Hirota method in 
handling complex interactions in fractional equations. However, integrability must be verified 
using additional methods. 

The defocusing branch of the negative-order mfKdV equation

For the defocusing branch, the study also derives multiple singular soliton solutions. 
These solutions may correspond to blow-up or singularities in the system, where the amplitude 
of the wave tends to infinity under certain conditions. These types of solutions are significant 
in understanding phenomena like wave collapse or extreme wave events in non-linear media. We 
derive the nmfKdV equation for the defocusing branch:

26 0t x xD D Dα α αααϕ ϕ ϕ ϕ− + = (28)
this describes the opposite behavior, where the wave tends to spread out or disperse over time. 
For soliton solutions, this would correspond to waves maintaining their shape and speed without 
collapsing. The defocusing case is typically associated with stable wave propagation, where 
solitons retain their form over long periods. By applying the negative-order fractional hierarchy: 
	 ΩDt

αφ = Dα
xφ	  (29)

with the recursion operator Ω for the focusing branch is provided in eq. (7). In essence, we 
utilize:

( )4 4x x t xD D D Dαα α α αϕ ϕ ϕ ϕ−− + + = (30)
which yields: 

24 4 ( )x t t x x t xD D D D D D Dαα α α α α α αϕ ϕ ϕ ϕ ϕ ϕ ϕ−− + + = (31)
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Thus, we can apply:
24

( )
4

x t t x
x t

x

D D D D
D D

D

αα α α α
α α

α

ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ
− − +

= (32)

To eliminate D–α
x (φDt

αφ) we take fractional differentiate both sides of eq. (31) with 
respect to x, resulting:

24 12 4 ( )x t x t x t x x t xD D D D D D D D D Dααα α α α α α αα α α ααϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ−− + + + = (33)

Replacing eq. (32) into eq. (33) results in the nmfKdV equation:
2 2 24 12 ( ) 4 0x x t x x t x t x x t x tD D D D D D D D D D D D Dα ααα α α α α α α αα αα α αα αϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ− + + + − = (34)

Examining the Painleve property of eq. (34)

Firstly, the leading order n and the leading coefficient φ0​ must be determined. To do 
this, we substitute φ = φ0 ψ n, into eq. (34). By balancing the non-linear and fractional dispersive 
terms, we obtain:

	 01, xn Dαϕ ψ= − = ±

Substituting:

	
1 1

0
j

jϕ ϕ ψ ϕ ψ− −= +

into eq. (34), and setting the coefficient of ψ j–7 equal to zero, we get:

	
5( ) ( 1)( 2)( 3)( 4) 0t x jD D j j j jα αψ ψ ϕ + − − − =

from this, we observe that four resonant points happen at j = –1, 2, 3, and 4. The final step is to 
test the resonant conditions. We may suppose:

	

4
1

0

s
s

s
ϕ ϕ ψ =

=

= ∑
we adopt Kruskal’s ansatz:

 	

x tα α

ψ ψ
α α

 
= +  

 

thus, the coefficients φs will be functions of t only. By substituting the expansion eq. (35) into 
eq. (34) and setting the terms based on the different powers of ψ to zero, we can find also  
φ = 0, and φ2, φ3, φ4 are arbitrary functions of t. Thus, eq. (34) is integrable in the sense of having 
the Painleve property.

Calculating multi-soliton solutions for eq. (34)

To derive the dispersion relation, we set:

( , )( , ) ln
( , )x

f t xt x RD
g t x

α α
α α α

α αϕ
   =   

    
(35)

where the auxiliary functions f(tα, xα) and g(tα, xα), for the single soliton solutions, is given:
( )/ ( )/( , ) 1 e , ( , ) 1 ekx t kx tf t x g t x

α α α αα α ω α α α ω α− −= + = − (36)
Replacing eq. (36) into the nmfKdV eq. (34) gives the dispersion relation by R =1, and 

ω = –1/k so the single soliton solutions soliton solutions take the formula:
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( )( / )/ 2( / )/( , ) 2 / 1 ,k x t k k x t kt x ke e
α α α αα α α αϕ + += − (37)

For computing the two soliton solutions, we put the auxiliary function:
1 2 1 2 1 2 1 2

12 12
3

( , ) 1 e e e , ( , ) 1 e e e

, 1,2i i
i

f t x a g t x a

k x k t
i

θ θ θ θ θ θ θ θα α α α

α α
θ

α

+ += + + + = − − +

−
= =

(38)

Using eq. (38) in eq. (35) and substituting the result in eq. (34), we obtain the follow-
ing phase shift coefficient:

( )
( )

2
1 2

12 2
1 2

k k
a

k k

−
=

+
(39)

and hence we set the phase shifts:

( )
( )

2

2 , 1 i 3i j
ij

i j

k k
a j

k k

−
= ≤ ≤ ≤

+
(40)

For the three-soliton solutions, we set:
3 2 3 1 3 1 2 31 2 1 2

3 2 3 1 3 1 2 31 2 1 2

12 23 13 123

12 23 13 123

( , ) 1 e e e e e e e

( , ) 1 e e e e e e e

, 1,2,3

i

i
i

f t x a a a b

g t x a a a b

k x t
k

i

θ θ θ θ θ θ θ θθ θ θ θα α

θ θ θ θ θ θ θ θθ θ θ θα α

α α

θ
α

+ + + ++

+ + + ++

= + + + + + + +

= − − − + + + −

+

= =

(41)

Proceeding as before, we find that:
	 b123 = a12a23a13	  (42)

We note that all the results obtained in [28] are recovered when α = 1. 

Conclusions

The recursion operator plays a central role in the study of the nfmKdV equation. By 
generating multi-soliton from simpler one-soliton, it allows for a systematic exploration of soli-
ton dynamics in fractional systems. The combination of the recursion operator with techniques 
like the Hirota technique enables the derivation of focusing and defocusing soliton solutions, as 
well as the study of their interactions in the presence of fractional derivatives. This approach is 
crucial for modelling non-linear fractional systems and provides valuable insights into the be-
havior of solitons in systems characterized by memory, long-range interactions, and non-local 
effects. The fractional Painleve property is a natural extension of the classical Painleve property 
to FDE. It is important because it ensures that the solutions to these equations exhibit analytic 
behavior (except for isolated poles) and are consistent with the behavior of integrable systems. 
This property is useful for understanding the integrability of fractional systems, which arise in 
many modern applications, such as anomalous diffusion, non-locality, and systems with memo-
ry effects. The study of the fractional Painleve property opens up new avenues for solving FDE, 
especially in the context of non-linear dynamics and wave propagation.

 While the results presented here are promising, several avenues for future exploration 
remain: The current work focuses on (1+1)-D fractional system. Extending the negative-or-
der fractional mKdV equations to higher fractional dimensional settings, such as (2+1)-D or  
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(3+1)-D, could provide a deeper understanding of soliton solutions in more complex physical 
systems. Although we have derived exact solutions analytically, it would be valuable to inves-
tigate the numerical stability and accuracy of these solutions using computational methods. 
This could include the development of efficient algorithms for solving nmKdV equations and 
exploring their behavior in various parameter regimes. Investigating the non-integrable ver-
sions of the nmKdV equations and understanding how they behave under perturbation could 
offer new insights into real-world phenomena that are governed by similar equations but may 
not possess exact soliton solutions. The study of soliton interactions within the context of the 
nmKdV equations, particularly the focusing and defocusing forms, could provide further in-
sights into the dynamics of multi-soliton solutions. Investigating higher-order interactions and 
the stability of these solutions in both branches could reveal important physical behaviors.

 Several open problems emerge from the work presented here: While we have shown 
the existence of multiple soliton solutions and singular soliton solutions, an open question is 
whether more general classes of soliton solutions exist for the nmKdV equations, especially in 
higher-order cases or in non-integrable settings. The detailed exploration of the symmetries of 
the nmKdV equations and their corresponding recursion operators could lead to new insights 
into the underlying structure of these equations. Understanding how these symmetries relate to 
physical properties of the systems modeled by these equations is still an open problem. While 
Backlund transformations have been extensively studied for the mKdV equation, developing 
Backlund transformations specifically for the nmKdV equations could provide a powerful tool 
for generating new solutions and exploring the interconnections between different integrable 
systems. Another open problem is the application of the inverse scattering transform to the 
nmKdV equations. Investigating the solvability of the nmKdV equations through inverse scat-
tering transform would provide a deeper understanding of their integrability and could help in 
the analysis of their long-time behavior.
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