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In this study, we employed the M-truncated fractional singular manifold meth-
od to analytically address the (2+1)-dimensional M-truncated fractional Burgers 
equation. This approach involves reformulating the original fractional differen-
tial equation into a more tractable form through the introduction of a singular 
manifold. This transformation simplifies the problem and often leads to analytical 
solutions. We derive a general solution expressed in terms of arbitrary functions, 
which enables us to accommodate variations in system parameters or initial condi-
tions. This results in a versatile expression that captures a broad spectrum of pos-
sible solutions, providing a framework for analyzing the dynamics of kink waves 
in the relevant fractional differential models. We also construct multiple kink wave 
solutions, offering analytical representations of kink wave behavior within these 
models. Notably, our findings revert to well-established results when the fractional 
order is set to one, thereby affirming the consistency of this method with 	 existing 
theories and validating our approach. 
Key words: M-truncated fractional derivative, fractional calculus,  

fractional models, Burgers equation

Introduction

The concept of fractional derivatives dates back to the notable correspondence be-
tween Leibniz and L’Hospital in 1695. Over the last sixty years, fractional calculus has signifi-
cantly influenced a wide range of fields, including physics, chemistry, electrical engineering, 
biology, economics, image processing, and aerodynamics [1-6]. In the past decade, fractional 
calculus has emerged as a crucial tool for modelling long-memory processes, attracting the 
attention of engineers, physicists, and mathematicians alike [7-12]. Understanding the solu-
tions to fractional differential equations is vital for enhancing our grasp of physical processes 
characterized by fractional orders, with substantial implications for practical applications and 
real-world impacts. Partial and ordinary differential equations are widely used in disciplines 
such as fluid dynamics [13-16], system identification [17-19], control theory [20, 21], and im-
age processing [22, 23], among others, to model complex phenomena [10-27].
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The fractional calculus is a field that expands traditional calculus, which typically fo-
cuses on integer-order derivatives, to encompass fractional orders [1-12]. This extension leads 
to various formulations of fractional derivatives, including the Riemann-Liouville (RL) [17], 
Caputo [19], He’s [18], conformable [20], and local fractional derivatives [21, 22]. The RL frac-
tional derivative is a foundational approach based on integrals, while He’s fractional derivative 
utilizes He’s polynomials for its definition. Caputo’s fractional derivative combines integer-or-
der differentials with the RL framework, making it particularly effective for analyzing initial 
value problems. The more recent conformable fractional derivative adheres to ordinary product 
rules and is well-suited for functions with singularities. Each of these definitions offers unique 
advantages and is employed across various fields, including physics, engineering, and signal 
processing, to address challenges involving fractional-order models and natural phenomena.

The fractional Burgers equation, a simplified version of the fractional model, effec-
tively captures the interplay between dissipative effects and non-linear propagation. This model 
has applications across various fields, including hydrodynamics, fluid dynamics, wave prop-
agation in thermo elastic media, acoustic transmission, plasma physics, traffic flow, MHD, 
shock waves, supersonic flow around airfoils, diffusion-affected waves, liquid dynamics, and 
information sciences. In this manuscript, we will investigate the general form of the analytical 
solution, as well as multiple soliton and singular soliton solutions for the model under consid-
eration.

Overview and characteristics of the M-truncated fractional derivative

The truncated Mittag-Leffler function (MLF) can be defined:
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Definition 1: Let ψ: [0, ∞] → R be a function, the local truncated M-fractional differ-
ential (MFD) of ψ with respect to y is given [25]:
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The MFD adheres to the axioms: 
, ,
, ,, , 0, ( )

( 1)
n n

l lM s M s
nD s s n R D c s cα β α α β ψ
β

−= ∈ = ∀ =
Γ +

(3)

, , ,
1 2 1 2 1 2, , ,( ) , ,l l lM s M s M sD c c c D c D c cα β α β α βψ ϕ ψ ϕ+ = + ∀ ∈ℜ (4)

, , ,
, , ,( )l l lM s M s M sD D Dα β α β α βψϕ ψ ϕ ϕ ψ= + (5)

, ,
, ,,

, 2
l lM s M s

l M s
D D

D
α β α β

α β ψ ϕ ϕ ψϕ
ψ ψ

− 
= 

 
(6)

1
, , ,
, , ,

d d( ) , ( )
d ( 1) dl l lM s M s M s

sD D D s
s

α
α β α β α βϕ ϕϕ ψ ψ ϕ

ψ β

− 
= =  Γ + 

(7)

where φ, ψ are the two α-differentiable functions of a dependent variable, the aforementioned 
relations are proved in reference [25]. Choosing β = 1 and l = 1 on the two sides of eq. (1), we 
have:
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which is exactly the conformable fractional derivative [24]. Simply we write 1DM
α,β as DM

α,β. The 
MFD of some functions [25]:
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The MFD is applicable to non-differentiable functions, making it particularly useful 
for scenarios involving discontinuous media. Currently, fractional calculus extends the con-
cepts of integer-order integration and differentiation incorporate fractional orders. Recently, 
non-linear fractional models have emerged as a significant area of research, attracting attention 
from physicists, mathematicians, astronomers, and engineers alike. These models find wide-
spread applications across various scientific disciplines, including plasma physics, condensed 
matter physics, biomathematics, chemistry, biology, communication, and astronomy. Fractional 
calculus is essential in engineering and physics, with applications in areas such as fractal wave 
propagation, particle physics, electrical systems, and wave mechanics.

Fractional Burgers equation

The fractional (2+1)-Burgers equation is a fractional PDE that emerges in the study 
of fluid dynamics, especially concerning turbulence and shock wave propagation. This equa-
tion extends the classical fractional Burgers equation encompass two spatial dimensions and 
one temporal dimension. It models the evolution of velocity fields in 2-D flows, incorporating 
dissipative effects due to viscosity. Notably, it displays fascinating phenomena such as shock 
wave formation and turbulence, making it a key focus of research in fluid dynamics and related 
disciplines.

The (2+1) Burgers equation with fractional space and time derivatives:
, , , , ,
,t ,x ,x ,x ,y2 ,M M M M MD M D M ND M D M D Nα β αα β α β α β α β= + = (9)

where DM,t
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Equation (9) is the generalization of the (2+1)-Burgers equation [28]:
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The fractional (2+1) Burgers equation generalizes the classical fractional (1+1) Burgers equa-
tion by incorporating extra spatial dimensions and higher-order fractional derivatives. This 
fractional PDE is frequently encountered in the analysis of fluid dynamics and non-linear wave 
phenomena. By accounting for third-order spatial fractional derivatives, it introduces additional 
complexity compared to its classical version. This equation effectively describes phenomena 
such as shock formation, turbulence, and non-linear wave propagation in two spatial dimen-
sions, offering valuable insights into various physical systems governed by fluid dynamics and 
non-linear wave behavior.

Equations (9) can be written in another form by taking the transformation M = DM,y
α,βN.

Substituting the potential eq. (10) in eq. (9), then eq. (9) transformed:
, , , , , , ,
, , , , , , ,2M t M y M x M y M y M x M yD D N D D N D ND D Nα β α β αα β α β α β α β α β= + (10)

Utilizing the fractional singular manifold method and analyzing the leading order, we 
can truncate the Painleve chain of eq. (9):

1 1
0 1 0 1,M M M N N Nϕ ϕ− −= + = + (11)

with φ is the fractional singular manifold and {M1, N1} is an arbitrary solution eq. (9), substitut-
ing eq. (11) into eq. (9) and equating the coefficients of like powers of φ gives 
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Equation (12) is called the equation of M-truncated fractional singular manifold. 

Equations (11) and (12) specify an auto-Backlund M-truncated fractional transformation for 
eq. (9). If we take:
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Equations (13) and (14) constitute another form of an auto-Backlund M-truncated 
fractional transformation for eq. (9). If M1 = 0, N1 = 0, then we can get the Cole-Hopf type 
M-truncated fractional transformation or hetero-Backlund fractional transformation:
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If we suppose a special solution:

1 1 1
( 1) ( 1)0, ,x tM N N

α αβ β
α α

 Γ + Γ +
= =   

 
(16)



Al-Malki, M. A. S., et al.: Investigating Analytical Solutions for ... 
THERMAL SCIENCE: Year 2025, Vol. 29, No. 1A, pp. 337-345	 341

where N1 is the arbitrary function of indicated variables. Then we can obtain systematically that 
eq. (12) has the non-linear separation function solution:
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from eqs. (10), (11), (16), and (17) yields a general functional separation solution of the  
(2+1)-Burgers equation with M-truncated fractional space and time derivative:
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are arbitrary functions of the specified variables. By employing the fractional singular manifold 
method alongside a separation of variables approach, we derive a solution that depends on three 
distinct functions of both time and space variables. This enables us to investigate a variety of 
solution forms for eq. (9) of the (2+1) Burgers equation, which includes fractional derivatives 
in both spatial and temporal dimensions. Careful selection of these arbitrary functions allows 
us to analyze a wide range of behaviors and patterns characteristic of the system. When α = 1, 
β = 1, eqs. (10)-(18) correspond directly to eqs. (5)-(14) from the work of Peng and Yamba [29].

Multiple soliton solution 

Now we discuss the multiple-kink wave solution. If we choose:
( 1)( ) /e i i ik x r y c tM

α α αβ αΓ + + −= (19)

By substituting into the linear term of eq. (9), we obtain the dispersion relation  
ci = –ki

2, then we get:
2( 1)( )i i i

i
k x r y k tα α αβ

θ
α

Γ + + +
= (20)

By using the Cole-Hopf fractional transformation, the multiple-kink wave solution of 
eq. (9) is:

1 ,
,ln( ), M yN R f M Rf D fα β−= = (21)

For the one-kink wave solution:
2
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Substituting eq. (21) into eq, (10) and then solving for R, we have R = 1:
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The two-kink wave solution takes the form:
1 2 1 2

121 e e ef aθ θ θ θ+= + + + (24)
Using eq. (24) in eq. (21) and then substituting the result into eq. (10), we obtain  

R = 1, and there are no phase shifts a12 = 0, hence, we have:
Thus, we have:
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For the three-kink wave solution, we put:
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Proceeding as before, we have:
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For the N-kink wave solution, we put f  = 1 + eθ1 + eθ2 +...+ eθn, proceeding as before, 
we have:
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This gives the N-kink wave solution:
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Multiple singular soliton solution 

We assume that the singular soliton solution of eq. (9) takes a similar form to that 
described earlier, with the auxiliary function defined:
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2
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Substituting eq. (29) into eq. (10) and then solving for R, we have R = 1. So:
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The two singular kink wave solution takes the form:
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The two singular kink wave solution is:
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For the three-kink wave solution, we put:
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Proceeding as before, we have:
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For the N-singular kink wave solution, we put:

	
1 21 e e ... e nf θθ θ= − − − −

Proceeding as before, we have:
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This gives the N-singular kink wave solution:
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Conclusions

In this paper, we investigate the (2+1) fractional Burgers equation, uncovering a vari-
ety of solutions, including multiple kink and singular kink wave solutions. Notably, we observe 
that several non-linear fractional equations, even those incorporating higher fractional deriva-
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tives, produce identical solutions. This finding highlights the intricate and interconnected na-
ture of non-linear phenomena within the realm of fractional Burgers equations. The flexibility 
in selecting three arbitrary functions allows us to analyze diverse properties of these solutions, 
offering new physical insights into the problem. Additionally, the variability introduced by 
arbitrary fractional orders results in significantly richer structural complexities, empowering 
researchers to explore a wide range of solution behaviors and delve deeper into the underlying 
phenomena.

When the fractional order is set to one, our results align precisely with previous find-
ings by Peng and Yamba [29] and Wazwaz [28], reinforcing the consistency and validity of 
our work within the existing literature. This convergence underscores the robustness of our 
analytical framework and affirms the credibility of our findings. We believe this methodology 
has great potential for application in a variety of other non-linear fractional differential models. 
The versatility and effectiveness demonstrated in solving the (2+1) fractional Burgers equation 
suggest that similar approaches could be effectively applied to a wide array of non-linear frac-
tional differential equations, paving the way for exciting explorations across various scientific 
disciplines.
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