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Solution of radiative intensity plays an important role in many areas, such as 

combustion monitoring, fire detection, and infrared imaging simulation, etc. 

The reverse Monte Carlo method is a widely used method due to its high 

accuracy and flexibility. However, it has not been applied to solve radiative 

intensity in systems discretized by unstructured grids which are usually 

applied in complex geometries. This brings difficulty if the solution of 

radiative intensity is applied to practical radiative systems of irregular 

geometries, especially coupled with other physical problems, such as fluid 

flow, etc. In this work, the reverse Monte Carlo method based on unstructured 

grids is developed for solving radiative intensity in participating media with 

complex geometries. In order to improve the efficiency of ray tracing process, 

a preprocessing procedure is introduced to establish topological relationships 

between unstructured grids. Radiative heat flux and radiative intensity in 

radiative systems with different geometries of a cube and a triangular prism 

are calculated. Comparing with results of other methods in literatures, 

radiative heat flux and radiative intensity calculated by the present method 

shows very good accuracy. 

Key words: Reverse Monte Carlo method; Unstructured grids; Radiative 

intensity; Complex geometry 

1. Introduction 

Solving radiative intensity plays an important role in many engineering applications based on 

image analysis, such as combustion monitoring of industrial boilers [1, 2], fire detection [3, 4], and 

infrared imaging simulation[5-7]. Solutions of the Radiative Transfer Equation (RTE) such as the Monte 

Carlo method [8, 9], the discrete coordinate method [10, 11], the spherical harmonics method [12, 13], 

and the finite volume method [14] have been proposed and widely used in the past few decades. 

However, most of these methods are focused on solving the integral radiative quantities such as radiative 

heat flux. Some of them can solve radiative intensity in limited directions, such as the discrete coordinate 

method, and the finite volume method. In contrast, in order to analyze radiative images captured by 

cameras with millions of pixels in real applications, radiative intensities with millions of directions are 

to be solved, which brings challenge to the above mentioned RTE solutions. 
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The reverse Monte Carlo (RMC) method is an efficient method for solving directional radiation 

intensity [15, 16]. Wang et al. [17] performed inverse radiative analysis based on the RMC method, and 

used the visible radiative images received by the CCD to reconstruct the three-dimensional temperature 

distribution within the participating medium. Liu et al. [2] reconstructed the temperature distribution of 

laboratory-scale and large-scale pulverized coal furnaces based on the RMC method. In these 

applications, the RMC method is used to solve radiative intensity in directions corresponding to the view 

angles of all the camera pixels. Then, the relationship between the medium emission and the radiative 

images is established, which is important for temperature reconstruction. Due to the high resolution of 

the camera and the small field angle of a single pixel, the RMC method is much more efficient than the 

forward Monte Carlo method for radiative image analysis. The radiative intensity solved by the RMC 

method has good application prospects in online monitoring of combustion temperature. 

Currently, the RMC method are mostly applied to radiative systems with simple geometries which 

are discretized by structured grids [2, 17]. The ray tracing process is easy to implement. However, in 

actual applications, the geometries of the computational domain are often irregular and complex. 

Discretization errors are usually introduced if structured grids are applied to discretize the complex 

geometry, especially in the zone near the boundaries. Furthermore, most computational fluid dynamics 

software discretizes the computational domain by unstructured grids, even if the computational domain 

has simple geometries. It will be convenient if the same set of grids are used to solve the radiative 

transfer process by the RMC method. Therefore, extending the RMC method to applicable for 

unstructured grids can not only improve the calculation accuracy of radiative intensity, but also make 

the radiative transfer computation more convenient to couple with other physical problem such as fluid 

flow calculation etc. 

In this work, the RMC method based on unstructured grids is developed for solving radiative 

intensity in participating medium with complex geometries. First, the topological relationships between 

the unstructured grids are established to define their positional relationships. These relationships are 

helpful for quickly locating the next unstructured grid that the energy bundle will pass through in the 

ray tracing process. Then, the implementation of the RMC method based on unstructured grids is 

introduced in detail. Radiative heat flux and radiative intensity with high directional resolution in several 

geometries are calculated using the present developed method. The results are validated by comparing 

with those reported in previous studies. 

2. Theory 

2.1. Fundamental of the reverse Monte Carlo method 

For an emitting, absorbing, and scattering gray medium, the radiative transfer equation is 

expressed as [15] 
𝑑𝐼

𝑑𝑠
= 𝜅௔𝐼௕ − (𝜅௔ + 𝜎௦)𝐼 +

𝜎௦

4𝜋
න 𝐼(𝑠̂௜)Φ(𝑠̂௜, 𝑠̂)

ସగ

𝑑Ω௜ (1) 

where 𝜅௔  is the absorption coefficient, 𝜎௦ is the scattering coefficient, and Φ(𝑠̂௜, 𝑠̂) is the scattering 

phase function. Assuming that the participating medium is isotropically scattering, then the integral form 

of Eq. (1) can be written as 

𝐼(𝑠) = 𝐼(0)𝑒ିఉ௦ + න 𝑆(𝑠ᇱ, 𝑠̂)
௦

଴

𝑒ିఉ൫௦ି௦ᇲ൯𝛽𝑑𝑠ᇱ (2) 
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𝑆(𝑠, 𝑠̂) = (1 − 𝜔)𝐼௕ +
𝜔

4𝜋
න 𝐼(𝑠̂௜)

ସగ

𝑑𝛺௜ (3) 

where 𝛽 = 𝜅௔ + 𝜎௦, 𝜔 = 𝜎௦/𝛽, and 𝐼(0) is the radiative intensity at the boundary. 

The RMC method is a numerical method based on statistics principle that solves radiative transfer 

problems by tracing a large number of energy bundles. To calculate radiative intensity in a specific 

direction, N energy bundles are generated in the considered direction. Once the energy bundles tracing 

process is finished, N different radiative intensity results Ii (i=1, 2, 3, …, N) are obtained. Then, the 

radiative intensity in this direction can be estimated as 

𝐼 =
1

𝑁
෍ 𝐼௜

ே

௜ୀଵ

(4) 

In order to ensure the accuracy of the results, the calculation error can be evaluated by monitoring 

the standard deviation. The standard error of the calculated directional radiation intensity I can be 

expressed as [16, 18] 

𝜎ூ =
1

𝑁 − 1
ඩ෍ 𝐼௜

ଶ

ே

௜ୀଵ

−
1

𝑁
(෍ 𝐼௜

ே

௜ୀଵ

)ଶ (5) 

Then, the calculation error of the numerical result 𝛿 can be evaluated as [18] 

𝛿 =
|𝐼 − 𝐼௘௫௔௖௧|

𝐼௘௫௔௖௧
< 3

𝜎ூ

𝐼
(6) 

2.2. Implementation of the reverse Monte Carlo method in unstructured grids 

Ray tracing process is the most important part to implement the RMC method. In the ray tracing 

process, the events of absorption, scattering, and reflection of the energy bundles may occur at any 

location in the medium or at the boundaries. Therefore, it is important to quickly locate the number of 

the current cell and the next cell the energy bundle will go through. For systems discretized by structured 

grids, the cell number can be determined easily according to the location coordinates. In contrast, the 

determination of cell number in unstructured grids is complicated because there is no explicit connection 

between the cell number and location coordinates. In order to enhance the ray tracing efficiency, a 

preprocessing algorithm is executed to find out the adjacent cells for each cell. 

Take the case that the computational domain is discretized by tetrahedral cells for example, three 

tetrahedral cells and two triangular cells are shown in Fig. 1. The cells are depicted separately in the 

sketch in order to show the detail clearly. After grid discretization, the nodes number included in each 

cell, for example, tetrahedral cell in blue has Nodes A, B, C and D are known, and the coordinates of all 

the nodes are obtained. However, the position relationships of different cells are unknow. That is to say, 

for the tetrahedral cell in blue, its adjacent volume cells in green and surface cells in yellow is not known. 

This brings difficulty to find the next cell that the energy bundle will arrive in ray tracing process. The 

direct way is traversing all the cells and this leads to high computation cost. In this work, the topological 

relationships which include the adjacent cells information are established firstly by analyzing the 

common nodes between different cells. The information is used in the following ray tracing process and 

make it much more efficient. 
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Fig. 1 Topological relationship schematic of unstructured meshes 

Once the topological relationships to clarify the positional relationship between unstructured grids 

are established, the ray tracing process for a single energy bundle can be summarized as follows, 

a) Energy bundle emitting. First, the number of the emitting cell is determined based on the 

coordinates of the emitting point. Then, the emitting direction of the energy bundle is set to be the 

opposite direction of the radiative intensity to be calculated. The initial energy weight of the bundle 

𝑤=1, and the initial value of the radiative intensity 𝐼௜=0. The optical thickness that the energy bundle 

will go through in the medium before scattering is determined by 
𝑂௞௦ = − 𝑙𝑛(𝑟𝑎𝑛𝑑) (7) 

where 𝑂௞௦ is the scattering optical thickness and 𝑟𝑎𝑛𝑑 is a random number between 0 and 1 which is 

generated by the computer. 

b) Absorbing and reflecting at boundaries. If the energy bundle reaches a boundary, the energy 

bundle will be absorbed and reflected by the opaque boundary, or travel through the transparent 

boundary directly. For a diffuse surface boundary with reflectivity 𝜌 and blackbody radiative intensity 

𝐼௪,௕, the target radiative intensity in this ray tracing process is updated as, 
𝐼௜

௡௘௪ = 𝐼௜ + 𝑤 ∙ (1 − 𝜌) ∙ 𝐼௪,௕ (8) 

Since the energy beam is partially absorbed by the boundary, its remaining energy weight is 

updated as, 
𝑤௡௘௪ = 𝑤 ∙ 𝜌 (9) 

The remaining energy is reflected by the diffuse boundary, and the polar angle 𝜃 and the azimuthal 

angle 𝜙 of the reflecting direction can be determined by two random numbers, which are expressed in 

the local coordinate system as, 

𝜃 = 𝑠𝑖𝑛ିଵ √𝑟𝑎𝑛𝑑 (10) 

𝜙 = 2𝜋 ∙  𝑟𝑎𝑛𝑑 (11) 

c) Absorbing or scattering in the medium volume. If the energy bundle travels in a medium volume, 

the energy bundle will be absorbed and scattered by the participating medium. Assuming the medium 

volume has absorption coefficient 𝑘௔ , scattering coefficient 𝑘௦, and blackbody radiative intensity 𝐼௕, 

and the geometric length of the ray through the medium volume is 𝑠, the target radiative intensity is 

updated as, 
𝐼௜

௡௘௪ = 𝐼௜ + 𝑤 ∙ (1 − 𝑒ି఑ೌ௦) ∙ 𝐼௕ (12) 
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Due to the absorption of the medium, the remaining energy weight after the energy bundle transmits 

the medium volume is 
𝑤௡௘௪ = 𝑤 ∙ 𝑒ି఑ೌ௦ (13) 

Then, the remaining scattered optical thickness is updated as, 
𝑂௞௦

௡௘௪ = 𝑂௞௦ − 𝜎௦𝑠 (14) 

If the scattering optical thickness is reduced to zero, the energy bundle will be scattered by the 

participating medium. For isotropic scattering medium, the polar angle 𝜃 and the azimuthal angle 𝜙 

of the scattering direction can be generated by two random numbers, which are expressed in the local 

coordinate system as, 
𝜃 = 𝑠𝑖𝑛ିଵ(1 − 2𝑟𝑎𝑛𝑑) (15) 

𝜙 = 2𝜋 𝑟𝑎𝑛𝑑 (16) 

If the remaining energy weight of the tracing bundle is less than a predefined threshold, the tracing 

process for the current bundle is terminated, and the next energy bundle is processed. 

3. Results and discussion 

A cube and a triangular prism which have been extensively studied in literatures are employed to 

test the developed method. Radiative heat flux and directional radiation intensity with high directional 

resolution are calculated using the developed method. The obtained results are analyzed and compared 

with those reported in literatures. The present method is implemented by MATLAB programming, and 

all calculations are completed on a personal computer with an Intel Core i5-8265 processor, and 20 GB 

RAM. The threshold value of the residual energy bundle is set to be 10-6. In order to limit the impact of 

statistical uncertainty on calculation accuracy, the value of 3I/I in Eq. (6) which can be updated in real-

time as the number of energy bundles increases is set to be 0.001, which ensures that the biggest error 

of calculation results is less than 0.1%. 

3.1. Radiative transfer in cubic enclosure 

A cubic enclosure filled with uniform emitting and scattering medium is shown in Fig. 1. The side 

length of the cube L is 1.0 m, and all walls are cold and diffuse with a uniform reflectivity 𝜌. As shown 

in Fig. 2(a), a cartesian coordinate system originating at the center of the cube is established to describe 

the distribution of radiative parameters. The cube is discretized by 10033 unstructured volume cells and 

1744 unstructured boundary faces, as shown in Fig. 2(b). 

   
(a) (b) 

Fig. 2 The schematic of the cubic enclosure (a) geometry (b) grids 
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The radiative system considered are the same as that in Ref. [19]. All walls are non-reflective with 

reflectivity 𝜌 = 0. The medium is gray with scattering coefficient 𝜎௦ = 0, and blackbody emissive 

power Eb. For different absorption coefficients 𝜅௔ = 0.1, 1.0 and 10.0 m-1, radiative heat flux along 

line AA as shown in Fig. 1(a), is calculated using the present method. The results are compared with the 

exact solution provided in Ref. [20] and are shown in Fig. 3. As shown in the figure, the results obtained 

by the present method are in good agreement with the exact solution. 

 

Fig. 3 Comparison of radiative heat flux 

In order to verify the reliability of the present method for solving the radiative intensity, the 

calculating conditions are set to be the same as those in Ref. [16]. The medium within the cube is 

emitting, absorbing, and isotropically scattering, and is highly heterogeneous in both temperature and 

optical properties, and the distribution of 𝜅௔, 𝜎௦ and 𝐸௕ is described by Eqs. (17-19). The walls are 

cold and diffusely reflective. Different cases with wall reflectivity 𝜌 = 0.0 and 0.5 are considered. The 

radiative intensity at point P (-0.5, 0, 0) is calculated. 

𝜅௔(𝑥, 𝑦, 𝑧) = exp ቈ−
3(𝑥 + 0.5𝐿)

𝐿
቉ ቎1 − ඨ

2(𝑦ଶ + 𝑧ଶ)

𝐿ଶ ቏ (17) 

𝜎௦(𝑥, 𝑦, 𝑧) = exp ቈ−
3(𝑥 + 0.5𝐿)

𝐿
቉ ቎1 − ඨ

2(𝑦ଶ + 𝑧ଶ)

𝐿ଶ ቏ (18) 

𝐸௕(𝑥, 𝑦, 𝑧) = 𝐸௕,௠௔௫exp ቈ−
3(𝑥 + 0.5𝐿)

𝐿
቉ ቎1 − ඨ

2(𝑦ଶ + 𝑧ଶ)

𝐿ଶ ቏ (19) 

The nondimensional radiative intensity 𝐼(𝜃, 𝜙)/(𝐸௕,௠௔௫/π) in directions with 𝜙 = 0° and 180° 

obtained by the present method is presented in Fig. 4. The benchmark solution is provided by the NC-

RMC method in Ref. [16], which has been proven to have high accuracy. As shown in the figure, 

radiative intensity results with wall reflectivity of 0.5 is larger than those with wall reflectivity of 0.0, 

since the wall reflection keeps more energy stay in the system, which leads to bigger emissive power at 

the boundary. The results obtained by the present method agree very well with the benchmark solution. 

It shows that the proposed unstructured RMC method can calculate the radiative intensity with high 

accuracy. 
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Fig. 4 Comparison of radiative intensity 

Radiative intensity with high directional resolution at point P as shown in Fig. 2 is calculated using 

the present method. An angular discretization using spherical ring with 10 levels is employed and 

radiative intensities in 265 directions over a semispherical solid angle are obtained. The nondimensional 

radiative intensities are shown in Fig. 5(a), and the difference comparing with those by the NC-RMC 

method is shown in Fig. 5(b). As described by Eq. (9), the medium gets hotter at the position closer to 

point P, so radiative intensity in the direction where its polar angle is close to 90° is greater. This trend 

is consistent with that presented in the literature. The differences of the results obtained by the present 

method and those by the NC-RMC method are shown in Fig. 5(b). The biggest difference is less than 

0.8%, and the average difference is about 0.2%. This proves that the proposed unstructured reverse 

Monte Carlo method has high accuracy for solving directional radiation intensity. 

  
(a) (b) 

Fig. 5 Hemispherical radiative intensity at point P (a) nondimensional radiative intensity by the 

present method (b) radiative intensity difference 

3.2. Radiative Transfer in triangular prism enclosure 

In this section, a three-dimensional radiative system of equilateral triangular prism as shown in Fig. 

6(a) which has been investigated in Ref. [21] is considered. The three-dimensional equilateral triangular 

prism is filled with absorbing and emitting media assigned uniform emissive power. The walls are cold 

and black. The size parameters L and H as labelled in Fig. 6(a) are all equal to 1.0 m. The computational 

domain is discretized by 1615 unstructured grids, as sketched in Fig. 5(b). The unstructured grids 

employed in this system are not as fine as those shown in Fig. 2(b). 
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(a) (b) 

Fig. 6 The schematic of the triangular prism enclosure (a) geometry (b) grids 

For different absorption coefficients 𝜅௔= 0.1, 1.0 and 10 m-1, the results of radiative heat flux along 

the BB line, the blue line as shown in Fig. 6(a), are calculated and shown in Fig. 7. The benchmark 

results provided in Ref. [21] are also shown in the figure. Results by these two methods confirm very 

well with each other. The biggest difference is less than 0.2%. It is worth noting that for the uniform 

medium considered in this figure, grid discretization does not introduce additional errors. The 

calculation errors of the present method are all introduced by statistical property of the Monte Carlo 

method. Then, even if the unstructured grid in Fig. 6(b) is coarse, the present method can obtain radiative 

heat flux with high accuracy. 

 

Fig. 7 Comparison of radiative heat flux 

In order to investigate the accuracy of the radiative intensity calculated by the unstructured RMC 

method, radiative intensity at the center point of the x = 0 plane, as indicated by point P in Fig. 6(a) is 

calculated by both the unstructured RMC method developed in the current work and the NC-RMC 

method in Ref. [16]. The system is discretized by 1615 unstructured grids, which are the same as those 

in Fig. 6. The triangular prism is filled with absorbing, emitting and isotropically scattering medium, 

and non-uniform medium with absorption coefficient, scattering coefficient, and emissive power 

described in Eqs. (20-22) is considered. The walls are cold and black. The spherical ring angle set with 

20 levels, which corresponds to 1029 discrete directions in hemisphere, is used for angle discretization. 
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𝜅௔(𝑥, 𝑦, 𝑧) = 5exp ൬−
3𝑥

𝐿
൰ ൦1 − ඨ3 ቂ𝑦ଶ + ൫𝑧 − √3𝐿/6൯

ଶ
ቃ

𝐿ଶ
൪ (20) 

𝜎௦(𝑥, 𝑦, 𝑧) = 5exp ൬−
3𝑥

𝐿
൰ ൦1 − ඨ3 ቂ𝑦ଶ + ൫𝑧 − √3𝐿/6൯

ଶ
ቃ

𝐿ଶ
൪ (21) 

𝐸௕(𝑥, 𝑦, 𝑧) = 𝐸௕,௠௔௫exp ൬−
3𝑥

𝐿
൰ ൦1 − ඨ3 ቂ𝑦ଶ + ൫𝑧 − √3𝐿/6൯

ଶ
ቃ

𝐿ଶ
൪ (22) 

Nondimensional radiative intensity 𝐼(𝜃, 𝜙)/(𝐸௕,௠௔௫/π)  calculated by the unstructured RMC 

method is presented in Fig. 8 (a). In the triangular prism, since the optical thickness varies in different 

directions, the radiative intensity distribution shows a similar triangle in the center of the figure. The 

difference between the results obtained by the present method and the benchmark solution is shown in 

Fig. 8(b). The largest difference is 3.1%, and the average difference is larger than 0.8%. Besides, the 

differences in 55 directions are greater than 2.0%. Most of the directions with large errors are those with 

a polar angle close to 90°. This is because the grid discretization here is coarse, and the current grid set 

cannot accurately describe the large varying gradient of the radiative parameters in the non-uniform 

medium close to point P. 

  
(a) (b) 

Fig. 8 Hemispherical radiative intensity at point P with 1615 unstructured grids (a) 

nondimensional radiative intensity by the present method (b) radiative intensity difference 

In order to improve the calculation accuracy of the present method, a refined grid set with 27150 

unstructured grids as shown in Fig. 9 is applied. Fig. 10 shows the nondimensional radiation intensity 

calculated by the present method, and the difference compared with the benchmark solution. As shown 

in Fig. 10(a), the triangle shape in the intensity figure has more obvious symmetrical feature, which 

shown higher accuracy of radiative intensity results compared with those in Fig. 8(a). Furthermore, the 

biggest difference compared with the benchmark solution is less than 1.0%, and the average difference 

is about 0.3%. In this case, the medium has strongly heterogeneous optical properties, and the calculation 

accuracy of the unstructured RMC method is significantly improved by refining the unstructured grids. 
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Fig. 9 The refined unstructured grids 

  
(a) (b) 

Fig. 10 Hemispherical radiative intensity at point P with 27150 unstructured grids (a) 

nondimensional radiative intensity by the present method (b) radiative intensity difference 

4. Conclusion 

In this paper, a reverse Monte Carlo method based on unstructured grids is developed for solving 

radiative intensity in participating medium with complex geometries. Two radiative systems with cube 

and triangular prism enclosures containing emitting, absorbing, non-scattering and scattering, uniform 

and non-uniform participating media are employed to test the present developed method. Both radiative 

heat flux and directional radiation intensity with high directional resolution are calculated by the present 

method and compared with those reported in literatures. The results of the present method have very 

good agreement with those of benchmark solutions. In all considered cases, the biggest differences of 

radiative intensity in hundreds or thousands of directions are all less than 1.0%, and the average 

differences are all less than 0.3%. The present study shows that the developed method adapts well to a 

variety of complex geometries and is suitable for unstructured grids, which brings huge advantages to 

solve practical problems, especially combined with other physical problems such as fluid flow. 

Nomenclature 

E emissive power, [Wm-2] 

I radiative intensity, [Wm-2sr-1] 
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a absorption coefficient, [m-1] 

s scattering coefficient, [m-1] 

O optical thickness, [–] 

rand random number, [–] 

s geometry path length, [m] 

𝑠̂ unit vector into a given direction, [–] 

S radiative source function, [Wm-2sr-1] 

w weight of energy bundles, [–] 

 extinction coefficient, [m-1] 

 calculation error, [–] 

 polar angle, [°] 

 reflectivity, [–] 

 standard error, [–] 

𝜙 azimuthal angle, [°] 

Φ scattering phase function, [sr-1] 

𝜔 scattering albedo, [–] 

 solid angle, [sr] 

subscripts 

b blackbody value 

i incoming direction 

w wall value 
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