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Given the growing trend of increasing waste and diminishing resources, 

considerable efforts are being directed toward developing innovative 

methods for utilizing various types of waste as potential energy and material 

resources. Agriculture generates large quantities of waste, and inadequate 

management of this waste can cause severe environmental challenges. 

Transforming agricultural waste (AW) into biogas presents an excellent 

opportunity for its effective use; however, commercializing this process 

requires a comprehensive understanding of potential AW sources, primarily 

the types and quantities of waste generated. Consequently, this paper 

proposes a deep learning-based image segmentation approach for 

identifying potential AW sources using remote sensing images. The research 

examines the effectiveness of the DeepLabV3+ with various backbone 

networks for semantic segmentation with an emphasis on detecting vineyards 

as potential contributors to agricultural waste for biogas generation. 
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1. Introduction  

With the increasing generation of waste and depletion of natural resources, innovative strategies 

have emerged to repurpose waste as valuable resources. Agricultural residues are particularly 

important for their dual role in providing chemical energy and essential nutrients. However, 

continuous extraction of agricultural waste (AW) depletes soil nutrients, requiring fertilization with 

synthetic nutrients like phosphorus, a critical resource in the EU [1]. Studies indicate that some 

landfills contain higher phosphorus levels than agricultural soils [2]. If left unmanaged, AW 

decomposes, releasing significant greenhouse gases and exacerbating environmental issues. On the 

other hand, AW can be converted into biogas through anaerobic digestion, reducing emissions by 13.4 

kg CO₂-equivalent per cubic meter [3]. Europe generates 700 million tons of AW annually, 

underscoring its global potential for energy valorization [4]. Despite various waste management 

initiatives, such as composting and anaerobic digestion, AW remains underutilized, especially in 

regions like the Western Balkans [5, 6]. Anaerobic digestion represents a scientifically validated 

approach for the valorization of AW, enabling the conversion of organic matter into biogas a 
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renewable energy carrier, and digestate, a nutrient-rich byproduct suitable for soil enrichment. This 

process not only mitigates environmental impacts associated with untreated waste but also contributes 

to the transition towards a circular economy by transforming waste streams into valuable energy and 

material resources. Efficient AW management is hindered by a lack of comprehensive data on the 

types and quantities of AW produced. Variability in crop locations, yield fluctuations due to climate 

conditions, and other factors exacerbate this challenge. To bridge this gap, robust methodologies are 

needed to accurately estimate AW quantities. This study addresses the first step in this process: the 

identification of crop types and their spatial distribution using satellite imagery. Future work will 

focus on predictive modeling to estimate AW quantities based on crop conversion rates and statistical 

yield data. 

The proposed methodology leverages deep learning-based image segmentation techniques on 

satellite imagery, captured during the vegetative period of crops, to identify and classify potential AW 

sources. By automating the detection process, this approach overcomes the limitations of traditional 

manual or drone-based methods, which are labor-intensive and time-consuming. Furthermore, the 

study focuses on vineyards as a case study, emphasizing the environmental and energy potential of 

grape pomace, a byproduct of wine production that poses environmental challenges due to its high 

acidity and organic content. Anaerobic digestion of grape pomace not only addresses its environmental 

impact but also converts it into biogas and digestate, creating a sustainable pathway for energy 

production and nutrient recovery. The objective of this study is to examine whether information can be 

effectively extracted from satellite imagery, with a particular focus on identifying potential sources of 

AW. In subsequent stages of the research, images will be acquired during the crop vegetation period, 

which will be a critical factor for accurate analysis. 

2. Related work 

Research on the use of remote satellite images for object detection, segmentation, and 

classification has evolved significantly, leveraging advancements in both traditional and deep learning 

methods. Early studies utilized texture statistics [7,8] for sea ice classification using Sentinel-1 (S1) 

synthetic aperture radar (SAR) data. Other approaches employed morphological characteristics to 

enhance image segmentation [9,10]. For object detection in high-resolution remote sensing images, 

advanced models, such as the rotation-invariant parts-based model [11] and rotation-invariant CNN 

(RICNN) [12] were introduced. The RICNN model attained rotation invariance by embedding a novel 

rotation-invariant layer within existing CNN architectures. 

Further advancements included integrating sparse representations for local-feature detection 

with generalized Hough transforms to identify object classes or specific instances in high-spatial-

resolution optical images [13]. The spatial sparse coding bag-of-words (SSCBOW) framework was 

also proposed to address the challenge of detecting targets with complex shapes in high-resolution 

remote sensing imagery [14]. These methods laid the foundation for applying deep neural networks 

(DNNs), whose adoption has grown due to their superior accuracy compared to conventional 

techniques [15]. Convolutional Neural Networks (CNNs) have emerged as a standout DNN 

architecture, excelling at image-driven pattern recognition tasks using images as direct input [16,17]. 

Recent innovations in deep learning, such as deep semantic segmentation networks, have 

significantly advanced the field of semantic segmentation [18]. This approach partitions an image into 

individual pixels, predicting the category of each pixel using large neural networks. Pixel-wise 
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semantic segmentation has proven efficient for identifying contextual features and improving 

classification accuracy [19], with applications spanning geographic information systems (GIS), 

autonomous vehicles, medical image analysis, and robotics. 

Shelhamer et al. [20] transformed conventional classification networks such as AlexNet, VGG 

Net, and GoogLeNet into Fully Convolutional Networks (FCNs) specifically adapted for semantic 

segmentation tasks. Unlike traditional CNNs, FCNs omit fully connected layers and incorporate 

upsampling techniques to produce output images matching the input size, enabling precise pixel 

classification. SegNet [21], a deep convolutional encoder-decoder architecture, further advanced 

semantic pixel-wise segmentation. Its encoder network mirrors the convolutional layers in VGG16 

[22], delivering improved performance in segmentation tasks by maintaining high-resolution feature 

maps. These innovations collectively highlight the progression from foundational methodologies to 

sophisticated deep learning techniques, offering unprecedented accuracy and efficiency in remote 

sensing and related applications. The development and refinement of semantic segmentation networks 

have been crucial for advancing the precise classification of objects in remote sensing imagery. 

Among these, SegNet stands out for its compact architecture, which was achieved by removing fully 

connected layers from the VGG16 encoder, making it smaller and easier to train. The decoder network 

in SegNet, its core component, uses a hierarchical structure where each decoder corresponds to an 

encoder, performing non-linear upsampling using max-pooling indices received from the encoder.  

Further innovations include the Semantic Channel Upsampling Network (SCU-Net) proposed 

by Wang et al. [23], which integrates a channel attention mechanism and an upsampling convolution-

deconvolution module (CDeConv). The CDeConv module aligns the feature map channels with 

segmentation task categories via point convolution and then adjusts the feature map size to match the 

original image dimensions through deconvolution. The SCU-Net also incorporates the Channel 

Feature Weight Extraction (CFWE) module to enhance feature extraction capabilities [24]. 

Another notable approach, U-Net [25], employs a U-shaped architecture featuring a contracting 

path for effective context capture and a symmetric expanding path to ensure precise localization. U-

Net's efficiency relies heavily on data augmentation, enabling end-to-end training with limited 

annotated samples. Google's DeepLab series has also significantly advanced semantic segmentation. 

DeepLabV1 [26,27], based on VGG16, combines responses from Deep Convolutional Neural 

Networks (DCNNs) with a fully connected Conditional Random Field (CRF) to improve segmentation 

accuracy by modeling pixel-label agreement and contextual relationships. Subsequent improvements 

include DeepLabV2, introducing Atrous Spatial Pyramid Pooling (ASPP) [28,29] to capture 

contextual information at multiple scales by applying Atrous convolutions with varying sampling 

rates. DeepLabV3 [30] enhanced boundary sharpness and computational efficiency through an 

encoder-decoder structure using Atrous separable convolution. Unlike its predecessors, DeepLabV3 

removed the CRF module and integrated batch normalization for improved training. DeepLabV3+ 

refined segmentation further with a decoder module designed to enhance results along object 

boundaries. 

Inspired by these advancements, this research employs the DeepLabV3+ architecture for 

semantic segmentation of satellite remote sensing images, focusing on mapping vineyards as potential 

sources of AW. Semantic segmentation, a pixel-level classification task, clusters image parts into 

object classes by associating each pixel with a specific label, making it ideal for identifying spatial and 

spectral features in remote sensing data [31]. 
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3. Study Area and Dataset  

In training the deep learning network, it is quite easy to cause memory to overflow, especially 

when large remote-sensing images are used. With an increase in the resolution of satellite images, 

problems like loss of spatial information and imbalance of class distribution due to many small objects 

visible in the image will appear. Labeling such large images is a complicated and time-consuming 

task, making it difficult to produce large datasets [23]. Additionally, for training a deep learning neural 

network, the training data set should not be too small to avoid overfitting. 

The data collection was conducted to recognize the vineyard as a source of AW. For this 

research, the dataset was gathered in two study areas. The first area was the vineyards at the foot of the 

mountain Fruška Gora and the second was the vineyards in the vicinity of the town of Vlasotince, 

Serbia. The satellite images were obtained from the publicly available Republic Geodetic Bureau [32]. 

Republic Geodetic Bureau uses digital orthophoto images (DOF) with a 30 cm resolution, enabling 

precise georeferencing of objects on the ground. These images were produced based on data collected 

during 2020 and 2021, using optical satellite systems such as WorldView-2, WorldView-3, and 

GeoEye-1. All images were taken with a ratio of 1:625. The images were preprocessed by performing 

random window sampling with a window size of 300 × 300 pixels, thus creating the uniform size of 

the experimental dataset (Fig.1). MATLAB’s application Image Labeler was used to label images for 

semantic segmentation. The ground truth annotation for 414 images was generated, of which 372 

images were used for training, while 42 images were used for testing to assess the performance of the 

DeepLabV3+ with the following backbone networks: ResNet18 [33], ResNet50, MobileNet-v2 [34], 

Xception [35], and Inception-ResNet-v2 [36]. 

Five pixel-classes were defined according to the landform characteristics of study areas and 

based on the objective of this study, shown in Fig. 2 as follows: 1) “Vineyard”, 2) “Field”, 3) “Forest”, 

4)” Road” and 5)” Others “. The "Other" class is used to label objects that do not belong to any of the 

four previously defined categories. These objects can include warehouses, various industrial 

structures, vehicles present on the road at a given time, or any other objects. 

Data augmentation was applied to transform the original data randomly during training, hence 

more variety to the training data was added, and network accuracy was improved. The same random 

transformation was applied to both image and pixel label data using the datastore. The performed 

image transformations include rotation, vertical flipping, and horizontal flipping. 

 

 
Figure 1. Collected examples for 

further processing (300 × 300 pixels) 

 

Figure 2. (a) Example images and (b) their 
segmentation masks 
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3.1. Class Imbalance 

As previously stated, five-pixel classes were defined based on the study's objective therefore it 

could be considered a multi-class classification problem. Multi-class classification expects balanced 

data i.e., all classes in the training dataset should be equally distributed. This ensures the model is 

equally informed about all classes. In our dataset, 63% of pixels over all images were labeled as class 

“Vineyard”, 3.80 % as “Road”, 24.64% as “Forest”, 8.34% as “Field”, and 0.06% as “Others” as 

illustrated in fig.3. To improve training, class weighting was used to balance the classes. Different 

weights were assigned during the fine-tuning of the model with values of 0.41, 4.26, 0.86, 1.00, and 

40.59 for each class, in the order specified above.  

 

 Figure 3. Distribution of pixels in different classes in the full dataset 

By applying weights, we guided a model to prioritize learning based on the importance assigned 

to a certain class. Weights scaled the loss function. During the training process, the error was 

amplified by the weight assigned to each point as the model trained on each point. The main goal of 

the model was to decrease error on the more heavily weighted classes, since they have a larger 

influence on error, and consequently convey a stronger signal. This approach prevented the model 

from predicting the more common class more frequently. 

4. Semantic segmentation based on DeepLabV3+ and backbone networks 

4.1. Transfer learning 

Generally, for the task of semantic segmentation, two approaches can be used. We can either 

create custom-built deep-learning networks or use pre-trained networks [37]. Creating a custom-built 

network implies that millions of labeled images are needed to develop a new model from scratch. 

Alternatively, we can use pre-trained deep learning networks that have already been trained on other 

datasets (transfer learning). Transfer learning is a technique in machine learning that allows a pre-

trained deep learning model to be adapted and used as the foundation for a different but related task. 

Transfer learning is quite popular among researchers because, with small modifications to the 

network, high accuracy can be achieved in studies that lack sufficient training images and labels [38]. 

Following this procedure, in this paper for the task of semantic segmentation, we used the next pre-

trained convolutional neural network architecture for the task of semantic segmentation: DeepLabV3+ 
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with the following backbone networks (Fig.4): ResNet18, ResNet50, MobileNet-v2, Xception, and 

Inception-ResNet-v2. All backbone networks were pre-trained on more than a million images from the 

ImageNet database [39] and then adapted to our dataset. 

 

 Figure 4. Proposed backbones and decoder  

4.2. DeepLabV3+ and backbone 

The DeepLabV3+ neural network utilizes an encoder-decoder architecture, where the encoder 

subnetworks (the backbone) are responsible for extracting complex features from the input images. 

The decoder network then processes these features to generate a segmentation map and accurately 

reconstruct the boundaries of objects at the original resolution of the image. Atrous spatial pyramid 

pooling module (ASPP), which follows the backbone network, is used to classify each pixel 

corresponding to their classes. The encoder incorporates an ASPP module that uses varying dilation 

rates (r = 6, 12, 18) to capture information across multiple scales. The output of the ASPP is then 

processed through a 1x1 convolution, upsampled, and merged with feature maps from the backbone 

network to effectively decode the encoder's outputs and refine the segmentation results. There is also 

the final upsampling at the end of the decoder which gives us the final segmented mask for the image. 

4.3. Experiment Setup 

In our experiments, we evaluated the performance of various networks for the segmentation of 

our dataset. For training and evaluating the neural networks, we followed a standard procedure. We 

initiated training with pretrained weights for each network and continued the process using our 

selected training and validation datasets until the validation loss had stabilized. The training began 

with a learning rate of 0.001, and we employed a piecewise learning rate schedule, reducing the 

learning rate by a factor of 0.3 every 10 epochs. To predict the class distribution, the Softmax function 

was applied to the network's output feature map. The Softmax loss was then calculated and 

backpropagated, and the network parameters were subsequently updated using Stochastic Gradient 

Descent (SGD) with a momentum of 0.9.  During the training procedure, we fed the samples into the 

network in batches, and each batch contained 8 images. The training strategy and parameters were the 

same for all networks. The proposed networks were trained using 60% of the images from the dataset, 

while the remaining 40% were split equally into 20% for validation and 20% for testing. Before 

training, the whole dataset was always randomly shuffled. To ensure the reliability of the performance 

comparison of different network models, the experiments in this paper were conducted under the same 

platform and hardware environment. Our hardware specifications include an Intel Core i7 processor 

(i7-8750H CPU 2.20GHz), 20 GB of RAM memory, and a Nvidia GeForce GTX 1050 Ti graphics 

processing unit (GPU). On the software side, Windows 10 and MATLAB (R2021a) were used.   
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5. Experimental Results 

5.1. Evaluation metrics 

There are several known metrics [40] that can used to evaluate semantic segmentation tasks. 

The most used metrics for semantic segmentation are the intersection over union metric (IoU) [41] 

also known as the Jaccard Index, and the mean boundary F1 contour matching score (meanBF score) 

[42] which are the metrics we also used for our evaluation. For each class, the IoU metric indicates the 

ratio of correctly classified pixels to the total number of pixels in both the ground truth and predicted 

outputs for that class. The mean IoU, on the other hand, is computed as the average IoU score across 

all classes and all images within the dataset. To reduce the impact of errors in datasets where images 

have disproportionately sized classes, we also used weighted-IoU. This metric calculates the average 

IoU for each class, where each class's score is weighted by the number of pixels it contains. The BF 

score measures how accurately the predicted boundaries of each class match the true boundaries, 

assessing the alignment between the predicted and actual contours. The meanBF score represents the 

average BF score for the class across all images. We also calculated the average BF score of all classes 

in all images. In terms of the confusion matrix, these metrics can be defined as: 

𝑰𝒐𝑼 =
𝑻𝑷

𝑻𝑷ା𝑭𝑷ା𝑭𝑵
       (1) 

𝐹ଵ =
ଶ்

ଶ்ାிାிே
                                      (2) 

Where TP, FN, FP, and TN represent the number of true positives, false negatives, and false 

positives, in pixel predictions for the class. 

5.2. Results 

Based on the training strategy, parameters, and dataset described above, DeepLabV3+ with the 

following backbone networks: ResNet18, ResNet50, MobileNet-v2, Xception, and Inception-ResNet-

v2 was trained and validated using 372 images and evaluated on 42 images. The experimental results 

are displayed in Tab. 1, Tab. 2, and Fig. 5. 

Table 1. Comparisons of DeepLabv3+ and backbone networks for pixel-wise classification 

(semantic segmentation) 

Decoder Backbone meanIoU (%) weighted-IoU (%) meanBF score (%) 

DeepLabV3+ ResNet18 0.7774 0.9366 0.7599 

ResNet50 0.7679 0.9347 0.7558 

MobileNet-v2 0.7274 0.9184 0.7006 

Xception 0.7358 0.9160 0.6924 

Inception-ResNet-v2 0.7672 0.9340 0.7743 

According to the results presented in Table 1, DeepLabv3+ with ResNet18 achieved the best 

performance compared to the others, with a meanIoU of 0.7774% and a meanBF score of 0.7599 %.  

Contrary to expectations, a larger backbone network did not improve the results of our experiments.  

A mean IoU of 0.7774% in semantic segmentation indicates strong performance, approaching the 

standards expected in high-performance applications. However, a meanBF score of 0.7599% suggests 

that the model is slightly under-segmenting the classes, as the predicted areas are significantly smaller 
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than the actual areas in the ground truth. The reason for the slightly lower meanBF score can be found 

when we examine Table 2. 

Table 2. The IoU and BF score for each class on the test dataset 

Backbone 
network 

ResNet18 ResNet50 MobileNet-v2 Xception Inception-
ResNet-v2 

Metrics 
Class 

IoU 
(%) 

Mean 
BF 
score 
(%) 

IoU 
(%) 

Mean 
BF 
score 
(%) 

IoU 
(%) 

Mean 
BF 
score 
(%) 

IoU 
(%) 

Mean 
BF 
score 
(%) 

IoU 
(%) 

Mean 
BF 
score 
(%) 

Vineyard 0.9592 0.8025 0.9589 0.7944 0.950 0.7587 0.9315 0.705 0.9576 0.799 

Road 0.6519 0.5980 0.6267 0.5477 0.575 0.5211 0.5816 0.5350 0.6418 0.606 

Other 0.4593 0.2397 0.4341 0.2159 0.359 0.2169 0.4820 0.3896 0.4340 0.388 

Forest 0.9376 0.7641 0.9325 0.7759 0.908 0.6716 0.9047 0.7020 0.9363 0.786 

Field 0.8788 0.6388 0.8873 0.6839 0.843 0.5819 0.7791 0.5692 0.8662 0.695 

The results presented in Table 2 show that classes with the highest number of pixels, such as 

“Vineyard” and “Forest,” achieved the best IoU and meanBF scores, while the class with the fewest 

pixels, “Other,” exhibited the lowest performance. The lower meanBF score of the model can be 

attributed to this class, as the model struggles with accurately recognizing and segmenting it. This is 

due to the class being less defined and often encompassing a variety of different objects. To further 

evaluate the overall performance of the semantic segmentation (pixel classification) method 

(DeepLabv3+ with ResNet18), a normalized confusion matrix was calculated. Figure 5 shows the 

classification accuracy of the true classes (ground-truth classes) versus the predicted classes. The most 

common misclassification of pixels is shown between the class “Road” and the class “Other”, The 

next misclassification is between class ‘Vineyard’ and class “Field”. The reason is that, in addition to 

the fields that have been planted with wheat for example, orchards are also included in the class 

"Field", in this research. The orchards often share similar features with vineyards, such as color and 

texture. 

 

Figure 5. Normalized Confusion matrix of the pixel accuracy for all classes from the best-
performing setup (DeepLabv3+ with ResNet18) 



9 

 

5.3. Discussion 

Analyzing the outputs of the method and considering the goal of this study to identify and 

classify potential sources of AW, we can conclude that the proposed approach using ResNet18 is 

suitable for this challenging task.  The results are promising and indicate that the model is quite 

acceptable, as most of the misclassification is due to incorrect classification between the "Road" and 

"Other" classes. To improve the model’s performance, it would be beneficial to adapt the ground-truth 

images to include additional classes, such as “Orchards” and wheat “Fields”, as a potential source of 

AW, and consider using a larger, more balanced training dataset.  

The challenge arises from the fact that the boundaries in the images are not always the clearest 

due to the characteristics of the soil. Variations in soil texture, color, and lighting conditions can create 

challenges for the model, making it difficult to accurately distinguish between different regions. These 

factors can blur the edges of the objects being segmented, leading to a reduction in segmentation 

accuracy, particularly for classes like "Road" and "Other," where the boundaries are less defined. For 

example, the road is often shaded by tree canopies, making it more difficult to distinguish the road’s 

boundaries in some areas. 

6. Conclusion and future work 

This paper focuses on recognizing and classifying AW sources using remote-sensing images. 

Proposed method is based on the DeepLabV3+ architecture with pre-trained deep neural networks for 

effective semantic segmentation. The study confirms the potential of CNN-based methods for 

segmenting AW sources, successfully identifying not only vineyards but also four additional classes, 

showcasing the method’s versatility in detecting various AW sources.  

Future research efforts are directed toward improving the generalizability and robustness of 

computational models by significantly expanding datasets. This will include incorporating additional 

labeled images and classes, such as "Orchards" and wheat "Fields," to capture a broader spectrum of 

agricultural landscapes. Moreover, research will delve into estimating the quantities of agricultural 

waste (AW) and analyzing seasonal dynamics, guided by regional agricultural practices and climatic 

variability. These investigations aim to provide a more nuanced understanding of AW availability 

throughout the year. Simultaneously, advancements in biogas production will emphasize the 

development of a holistic bioenergy chain framework. This integrated approach spans all stages, from 

the sourcing of biomass to its efficient conversion and delivery to end-users. By systematically 

assessing the physical and technical potential of biomass resources, this framework ensures a steady 

and optimized biogas supply, contributing to a sustainable energy system.  

Building on prior findings [43], future optimization of the anaerobic digestion process will 

target key factors influencing its efficiency. Specifically, efforts will focus on refining the carbon-to-

nitrogen (C/N) ratio to achieve a balanced microbial environment conducive to biogas production. 

Additionally, considerations will be given to waste generation rates and the geographic distribution of 

AW, as spatial dispersion presents logistical challenges. Addressing these factors will involve region-

specific strategies tailored to the unique characteristics of AW sources, ensuring more effective 

collection, transport, and utilization within the bioenergy framework.  

This comprehensive approach, combining model enhancements, waste quantification, seasonal 

analysis, and bioenergy system integration, is critical for the sustainable scaling of biogas production. 
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It aims to bridge technical, spatial, and environmental gaps, ultimately contributing to a resilient and 

efficient bioenergy network. 
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